
Evaluating the requirements for software process modeling languages and systems
M.Letizia Jaccheri

Norwegian University of Science and Technology (NTNU)
 Trondheim, N-7034, Norway

Mario Baldi
Dipartimento di Automatica e Informatica, Politecnico di Torino Corso Duca degli Abruzzi, 24

Torino, I-10129, Italy

Monica Divitini
Norwegian University of Science and Technology (NTNU)

 Trondheim, N-7034, Norway

ABSTRACT

We have defined a set of requirements for a process modeling
language which are: multiple representation levels to describe
general and instantiated processes; inheritance to factor and
reuse common knowledge; process specific constructs with
well defined syntax and semantics to describe process
elements; and associations to relate and constraints such
entities. A process modeling system must enable its users to
inspect and analyze process models according to different
perspectives. In this paper we discuss how we have set,
implemented, and evaluated these requirements. The discussion
is centered around a working example.

Keywords: software process modeling, object-orientation,
associations.

1. INTRODUCTION

Research in software process modeling has led to process
modeling languages, process centered software engineering
environments (PSEE’s), and methods to create, improve, enact,
and reuse software process models [12]. Part of the resulting
technologies has evolved into commercial products and there
are documented approaches that have applied software process
modeling to industrial cases [2] [4] [5] [16] [17] .
In this paper we will discuss a modeling work which was done
in collaboration with the information system department of
FIAT/Iveco. The first iteration has been our first attempt at
producing an object oriented model of a real-world software
process. During the first iteration we have identified a set of
requirements for a Process Modeling Language (PML) and
associated tool support. Then, we have designed and
implemented E3 version 1 (v1) on the basis of these
requirements. The main characteristics of the E3 PML are
easiness of use also by non expert users, and support for
abstraction and reuse, both in the context of the same model
and across different models. In E3 we distinguish between
instantiated process models and process templates. The term
«process model» denotes whichever process description. A
«template» is a general process model from which instantiated
models can be obtained. A instantiated model is at the same
abstraction level of a project plan, i.e., it includes time and
resources information, while a template is at the same
abstraction level of a quality manual.
During the second iteration, we have modeled the same process
by using E3 v1 1. This iteration has produced: a high level
process template, in the E3 PML, that is easily understandable
and reusable for new case studies; a Smalltalk translation of
this template that enables interactive simulation;
recommendations for improvement of the input quality manual;
a set of requirements for improving the E3 system. Then, we
have developed a set of requirements for the E3 system version
2 (v2) and these requirements have guided the design and
implementation of the second version of the system [19]. These
requirements mainly concern the tool support part. The PML
satisfies its requirements, i.e., it provides support for model
understanding, abstraction, and reuse.

We have finally exploited this second version of the system to
obtain a final model of the Iveco process.
The structure of this paper is as follows. Section 2 introduces
the requirements and summarizes the main features of the E3
PML and the associated tool E3 p-draw following its evolution
path from its conceiving to its latest version. Section 3
introduces the Iveco process, the respective E3 software
process model. Conclusions are given in Section 4.

2. THE E3 SYSTEM

Here, we present the evolution of the E3 system from its initial
requirements to its first and second implementation and we
show how the modeling of the Iveco process has had a central
role in this evolution. For more detailed explanations about E3,
refer to [15].
This first modeling phase has showed that a special purpose
PML is required. Thus, we have implemented the first version
of the E3 PML and E3 p-draw and further we have exploited
them for modeling the Iveco process. The second modeling
phase has taken almost 1 month. We have manually translated
the obtained process model into a Smalltalk program and we
have simulated it.
This second tentative has resulted in a positive evaluation of
the PML, and has given a set of extra requirements for the
support tool. These requirements have guided the design and
the implementation of the second version of E3 p-draw,
described in Section 2.4. We have used one day to model the
Iveco process with the second version of E3 p-draw.

Motivation
E3 has its roots in Object-Oriented (OO) techniques, and
conveys two basic ideas. (1) Object-orientation can be
successfully used for modeling software processes, as a
software process consists of a net of interacting objects. (2) the
description of a software process must be understood,
analyzed, and improved before it is implemented and executed.
These two main ideas has guided us to our first process
modeling experience during which we have modeled the Iveco
process using the Coad and Yourdon [7] OO analysis method
and a supporting tool. One process modeller has studied the
quality manual and has produced three outputs:
1. a preliminary OO description of the Iveco process in the
form of an OO model consisting of classes and relations;
2. a set of questions for the process owner;
3. a set of problems and requirements for a PML and associated
tool support.
This first experience has demonstrated that process models can
be obtained as the result of an OO analysis process. The
effectiveness of an OO modeling approach to the description of
software processes has set the following requirements for an
OO PML.
Multiple representation levels: common knowledge about
organization level processes can be represented in the form of
classes and associations, and instantiated for each actual

process. Also, common characteristics of classes can be
derived by objects, which are instances of those classes. Project
level information is often represented as plans while general
knowledge about the organizational process is represented in
the quality manual. A common framework is required to keep
this kind of information related.
Inheritance: the models can be organized according to an OO
inheritance hierarchy that enables to factor common knowledge
in single classes and reuse it in specialized classes. The original
Iveco quality manual describes the same information in several
places, and these repetitions lead to inconsistencies. A typical
example is the description of the document format: all
document types share a common structure that should be
represented in only one place.
On the other hand, when using Coad and Yourdon OO analysis
method for software process modeling, we have faced the
following problems:
Process specific constructs: typically, an OO software process
model will contain a set of classes and associations that are
general for several process models: a class document that
describes the generic software item (including documentation),
a class task that describes the generic activity, associations
input and output that describe the constraints about data flow,
etc.. Predefined process-dedicated syntax constructs are needed
as non-trivial process templates can consist of hundreds of
classes and associations that look as a flat web of identical
boxes (classes) and arrows (associations). Hence, process
specific constructs are needed to represent the main process
components, like activities, products, tools, roles, together with
the relations among them. These constructs must have an
associate semantics that must be clear and intuitive. Since the
language needs not to be executable, operational semantics
definition is not mandatory.
Inspection and analysis: specific mechanisms designed for the
software process domain are needed to help the user to inspect
and analyze a model from different process perspectives. As it
will be detailed in Section 3, the Iveco model encompasses 161
classes and 585 associations. Since it does not make sense to
present more than circa 10 classes in a single page, one needs
policies to section the model for presentation purposes. When
inspecting an OO process model, the data and control flow
perspective are of primary importance. In our context, data
flow means that for a given task class, one is interested in
seeing which are the input and output classes, etc. In addition
to the classical data and control flow, for a given task, it is
useful to find out which are its responsible agents, and which
tools it uses. After a model has been produced, it is crucial to
check for its correctness. This can be done by manual
inspection of the model, also in cooperation with the process
owners, but some automatic analysis mechanisms are needed.
Analysis can be achieved either statically, i.e., by automatic
inspection, or compilation of the model representation or
automatically, by examining the behavior of the execution of
the model. One way to obtain such behavior is model
simulation.
Associations: process models must represent not only the
entities involved in the process but also the relationships that
relate and constrain such entities. Existing OO analysis and
design methodologies and the related notations introduce
associations like aggregation, use, or creation, and user-
definable ones, but they do not provide a formal
characterization. While classes are a means to express
knowledge about local structure and behavior, associations
express how classes can be related in building the global
system. We state the requirement that associations must be
first-class elements, like classes. If a class participates in an
association, this knowledge has to be inherited by its
subclasses. A subclass must have a means to redefine such
inherited knowledge. This is crucial to allow a class to reuse
not only local knowledge of its super class, but also the
associations its super class participates in. The relationships
that are common to every software process have to be
represented in the associated template to facilitate template
inspection, understanding, and evolution. The same
association, e.g., precedence among activities, can appear
several times in a template and the knowledge about a given
association must be expressed by a single reusable item.
Syntax and semantics are not formally defined, thus preventing
automatic analysis or simulation.

In the following description of the E3 system we will refer to
examples taken from the representation of the Iveco process
obtained using the language itself. The graphic notation
showed in the figures of this paper is the one provided by the
second version of E3 p-draw.

The E3 PML
We propose show how the E3 PML implements the
requirements above. We will show how we have handled the
implementation of requirement inspection and analysis in the
different versions of the system.
Multiple representation levels: The E3 PML is an OO language
augmented with associations. Attributes can be declared for
each class and association. Methods can be declared for each
class. Each class inherits methods and attributes from its
superclasses. Each attribute has a name, a type and a value.
Inherited attributes can be redefined and new ones can be
added. A default value can be assigned to each attribute and it
can be modified later. Each method has a name. We do not
provide support for methods definition as this is a feature
required for design and not for analysis support methods and
tools [10]. The E3 PML offers three conceptual levels that
represent information about a software process at different
generalization levels. The first is the Instance level that is at the
same abstraction level of a real process, the second is the
Template level which represents characteristics common to
various processes, the third is the MetaTemplate level which
expresses general knowledge about how to manipulate
Templates. The E3 PML offers objects and links at Instance
level; classes and associations at Template level; metaclasses
and metaassociations at MetaTemplate level. Each object is the
instance of a class, and each link is the instance of an
association. Moreover, each class is the instance of a metaclass
and each association is the instance of a metaassociation. Thus,
objects and links denote an instantiated (real) process, classes
and associations denote a general process template, metaclasses
and metaassociations express general knowledge about how to
manipulate general templates.
Inheritance: Classes, metaclasses, and metaassociations are
organized in three single inheritance hierarchies. A class
inherits from its super class both attributes and methods, in the
OO way. In addition, we have designed a special mechanism
for association inheritance.
Process specific constructs: The E3 PML offers a kernel that
consists of basic metaclasses, classes and metaassociations.
Each process template consists of primary elements, e.g., tasks,
roles, humans, tools, and software products, and the
relationships among them. Thus, the PML offers these primary
process elements as first order elements, in the same way as
characters, strings, and integers are offered by a programming
language. The kernel is immutable and it will be the same for
each process template. Kernel metaclasses, are: E3object_mc,
Task_mc, Data_mc, Tool_mc, and Role_mc. E3Object_mc is
the super metaclass of the other metaclasses. Kernel classes
are: E3object, Task, Data, Tool, and Role. E3Object is the
super class of the other classes. Informally, Task denotes
software process activities, Data denotes software products,
Tool denotes tools or techniques, and Role denotes
responsibilities. Kernel metaassociations are: E3assoc_ma,
Aggregation_ma, Subtask_ma, Preorder_ma, Feedback_ma,
Input_ma, Output_ma, Responsible_ma, Use_ma.
Inspection and analysis: this will be discussed later.
Associations: Local knowledge, i.e., attributes and methods of
a class, is inherited in the OO standard way. A class also
inherits the associations in which its super class participates
and it can re-define them under well defined constraints. In this
way, global knowledge, i.e., constraints about template
fragments, or subnets, can be inherited as well. Inheritance and
re-definition are the basis for abstracting and reusing
knowledge in the context of a template. At the Template level,
there is not inheritance among associations. Each association is
the instance of a metaassociation. In addition, some
associations are re-definitions of other associations. Each
association takes its name from the name of its
metaassociation, e.g., each instance of Aggregation_ma, will be
named Aggregation. Instances of E3Assoc_ma will denote a
whichever association between two whichever classes.
Associations declare constraints about link instantiation. Only
binary associations are provided as they are easy to be
understood by not computer scientists. A binary association,

say A(C1,C2) can be instantiated into several links, between
instances of C1 and instances of C2.
Syntax and semantics: The language provides both a textual
and a graphic notation. The PML is given a formal syntax and
static semantics. The textual notation can be mapped onto the
graphic one, and vice versa. The graphic notation should be
exploited by users to develop, understand, and communicate
software process templates, while the textual notation is
manipulated by automated process modeling tools, such as
parsers and analyzers. E3 PML is not an executable process
modeling language. It is neither interpreted nor compiled, but it
is analyzable. This has been a precise choice to privilege
understanding, and analysis with respect to enaction.
The meaning of kernel classes is given in the following by
expressing the semantics of the respective objects:
§ Each Task instance denotes a software process activity. A

Task instance will start when its predecessors have
finished and its resources (input and roles) are ready.

§ Role instances model actual resources with
responsibilities and skills.

§ A Data instance models a software process artifact or
product component, like source code and anomaly forms.

§ Tool sub classes define methods of work. A Tool instance
represents a precise version of an automated tool or a
written procedure.

The meaning of associations is given in the following by
explaining the semantics of the corresponding links.
§ link Aggregation(o1,o2) denotes that object o2 is part of

o1.
§ link Subtask(t1,t2) denotes that object t2 of class Task is a

subprocess of t1.
§ link Preorder(t1,t2) denotes that the t2 can start only after

each task connected to it by link Preorder has finished.
§ link Feedback(t1,t2) denotes that t2 must re-start when t1

finishes with no approval.
§ link Responsible(t1,r1) denotes that the human resource r1

is responsible for carrying out task t1.
§ link Input(t1, d1) denotes that t1 takes as input d1.
§ link Output(t1, d1) denotes that t1 produces as output d1.
§ link Use(t1, tool1) denotes that t1 exploits tool tool1.

E3 p-draw version 1
The first version of the E3 system (E3 v1) is based on
Interviews, C++, and the OODBMS Objectivity. The
associated tool E3 p-draw enables its users to develop,
communicate, and browse software process templates. It has
the goal to render intuitive the development of software
process templates written in the E3 PML providing the
graphical representation of classes and associations slightly
different from the E3v2 one shown in this work. It offers
operations to create, change, browse, and delete items. An
operation can have side effects, when it would violate the
constraints set by the language. For example, the deletion of a
metaassociation triggers the deletion of its associations. These
side effects never take place without the consensus of the user.
The graphical interface of the first version of E3 p-draw is
based on Interviews; many E3 p-draw instances can run
concurrently in a distributed environment and act as clients of
the OODBMS Objectivity. A process modeling module, or
simply module, is the working unit of the tool. A module can
be saved, inspected, and retrieved.
E3 p-draw offers four kinds of views: Inheritance, Task, Task
Synchronization, and User View, that implement respectively
OO (Inheritance view), functional (Task View), control (Task
Synchronization View), and informational (User View)
perspectives.
§ There are two kinds of Inheritance views:The

SubInheritance View for C is the set of all classes that
inherit from C.

§ The SuperInheritance View for C is the transitive closure
of all classes from which C inherits.

2. The Task View for T contains: T; all definitions (including
the inherited ones) and re-definitions of associations input(T,
Di), output(T, Dk), and responsible(T, Rm); all Di, Dk, and
Rm.
3. The Task Synchronization View (TSV) of T contains: T; all
definitions of association subtask(T, Xi); all definitions of
associations preorder(Xi,Xj)and feedback(Xi,Xj), with Xi,Xj
belong to Xseq, where Xseq is the sequence of the above Xi
that are subtask of T.
4. The User View allows the modeller to define whichever
association. The modeller must provide each User View with a
name (or label) to enable the system to store and retrieve the
view for subsequent browsing.
Task Views and Task Synchronization Views are labeled by
the path through the associations subtask from the class
network origin (the Task subclass that represents the whole
template) to the given Task.
The PML imposes a set of constraints, e.g., it is forbidden to
connect two Data subclasses by a preorder association. Other
properties can be checked by means of queries on the
underlying DBMS, but are not enforced. For example, one can
check that there is at least a responsible role for each task.
Examples of constraints that one can impose on a process
template are: each Task class must produce at least an output
Data class; a Task class cannot be connected by a feedback
association to another Task class if the second class is not a
predecessor of the first one, according to the relation defined
by association preorder. A Task class C1 is predecessor of
Task class C2 if there is an association preorder(C1,C2)
between the two, or if it exists Task class Cx such that Cx is
predecessor of C2 and there is an association preorder(C1,Cx).

Smalltalk Simualtion
We have implemented and simulated the Iveco process
template using Smalltalk [13]. Simulation works according to
the following general rules: each father task dynamically
creates its subtasks which are executed according to
synchronization constraints given by associations preorder and
feedback. During the simulation objects are dynamically
created and destroyed. Simulation is centralized: a single user
interacts with the simulating process in order to provide run-
time parameters that emulate choices made by people involved
in the process. E.g., the user interfaces of the process
participants are displayed; each interface provides the user with
the list of activities the process participant is responsible for
and the user makes decisions concerning the execution time
and outcome of activities. A log of the simulation is recorded
to allow off-line analysis of the results. We have developed
some scripts that correspond to different scenarios. However,
the simulation needs the interaction with the user.
We believe that the simulation is useful to test synchronization
constraints among tasks; moreover, given a certain number of
process participants each playing one or more roles, the
simulation allows possible work overloads on some of the
participants to be detected.

Lessons learnt, requirements for E3 version 2
The result of this work is a set of recommendations for
improvement of the manual under study, an evaluation of the
E3 PML and the related first version of E3 p-draw, and the
implementation of v2 of the E3 system.
The strengths of the E3 system that have been revealed by this
work are:
Inheritance: It is not immediate for users to understand
Inheritance hierarchies. However, after a short explanation
users are able to understand concepts like inheritance that
factorizes structure and behavior that are common to all
production phases in the template; the process owners admitted
the importance of having the same concept represented in only
one part of the manual. Standard OO reuse mechanisms that
make possible for a class to inherit attributes and methods
declared for its super class are not so useful at modeling level.
In fact, at this level, a class (and respectively an association) is
not characterized by its attributes and methods, but by the
associations it participates in. Thus, our definition and re-
definition mechanisms that enable reuse by inheritance of the
structure of clusters of classes, was heavily used. The

definition and re-definition mechanism was useful to declare
global structural constraints that otherwise were not easy to
declare with an OO language.
Process specific constructs: kernel classes and associations and
their associated semantics facilitates model understanding and
communication. They constitute the first classification axis of a
process model, i.e., each item will be classified as a Task, or
Tool, etc.. This increases accuracy in process models.
Associations: The original textual process description
sometimes does not distinguish between activity, product, and
tool description, i.e., products and tools are described within
the activity description, thus the same description is repeated if
the same kind of products and tools are manipulated by
different activities. Associations help in producing declarative
not redundant models.
Syntax and semantics: The graphic features of E³ p-draw help
process understanding. On the other hand, a well defined
syntax and static semantics helps in producing consistent
models.
The main weaknesses of E3v1 revealed by this case study are:
Multiple representation levels:
§ Lack of instance level facilities: E³ p-draw v1 does not

support the Instance level. While a template is an abstract
description for a set of model, a model is a description of
a single process, including time and resource binding. If a
template has to be understood and used, it must be
possible to generate (either automatically or manually)
instantiated models.

Inspection and analysis:
§ Lack of a flexible view mechanism: the User View was

conceived to increase flexibility since it allows general
relationships among process elements to be expressed.
These relationships cannot be included in the other views
which constraint the usable associations. Nevertheless,
User Views as defined here are difficult to manage and
not easy and friendly to use. Flexible views must be
defined. Also, the views provided by E³ p-draw v1 are
Task oriented and do not enable the user to browse a
model from a perspective that is different from the Task
one. On the contrary it can be useful, for a given product
to see which tasks that consume it, or which that produces
it, etc. Analogously for tools and roles.

§ Problems in the simulation support: the Smalltalk
simulation showed absence of trivial errors, e.g.,
deadlocks. However, it cannot be regarded as a true
simulation in which probabilistic parameters are assigned
to activities and resources as was suggested by the process
owners. Also, the manual translation from E3 PML to
Smalltalk can introduce errors. We have then abandoned
this research path and we have decided to focus on static
analysis instead. Static analysis is more suitable than
dynamic simulation if the purpose of the models is
understanding by humans and not execution. This
assumption is supported by the fact that it was difficult for
the users to understand and appreciate the Smalltalk
simulation.

E3 p-draw version 2
The second version of the E3 system (E3v2) is written in Java,
therefore it is portable on many platforms. E3v2 does not
exploit a DBMS, rather, for portability reasons, the file
manipulation functionality provided by the Java language.
In addition to the obvious advantage of portability, the second
version of the E3 system extends the first one in the following
directions: we have added the Instance level. We have
extended the view mechanism to enable the user to design his
own views while maintaining compatibility with the data flow
and control flow kinds of views provided by E3v1. E3 v2
offers static analysis of process models by means of queries.

Views
The tool supports three kinds of views: editable views,
inheritance views, and derived views.
Editable views are available for each of the three PML levels.
Inheritance views are not available for the Instance level. Some
kinds of derived views do not make sense for the

MetaTemplate level. An editable view is like a blackboard in
which the user can create, modify, and delete PML items.
There are two kinds of inheritance views as in the first version
of the E3 system: the superinheritance view, that for a given
class displays its superclasses and the subinheritance view, that
for a given class displays its subclasses, i.e., the inheritance
tree rooted by the given class. Figure 1 shows an example of
subinheritance view.

Figure 1: The subinheritance view for class Phase.
The derived views, or only views, enable the user to browse a
process model in a selective way. There are four kinds of
derived views: simple, simple recursive, composite, composite
recursive. In addition, one can customize derived views by
making invisible one or more metaassociations (if one operates
at the Template level), or respectively associations (if one
operates at the Model level). If a metaassociation is made
invisible, its instance associations will not appear in derived
views. If an association is made invisible, its instance links will
not appear.
The simple view refers to a class (respectively object) and
shows all associations (respectively links) which involve the
class (respectively object). For example, in the case that
metaassociations input_ma and output_ma are the only visible
ones, the simple view for a Task sub class will show the
classes connected to it by input and output associations (this is
equivalent to a data flow oriented view). If metaassociation
preorder is the only visible one, the simple view for a Task sub
class will show its predecessor and successor classes (this is
equivalent to a control flow oriented view, i.e., the Task view
for E3 p-draw v1). Figure 2 shows an example of a simple
view (of class Analysis) where only responsible_ma and
preorder_ma metaassociations are visible. Note that the simple
view extends the Task view as it can be applied to whichever
class and object while the Task view was applicable only to
Task classes.

Figure 2: The Simple View for class Analysis.
The simple recursive view takes as input a class and it
recursively applies the simple view to all classes related to the
selected one. The composite view takes as input a class and

shows all the associations that are instances of Aggregation_ma
and in which the input class participates as destination class.
Also, for each class that participates to the above associations
as source class, it shows its simple view.
The recursive composite view refers to a class and it
recursively applies the composite view on the class and its
components. Figure 3 shows the recursive composite view for
class Analysis, visible metaassociations subtask_ma and
responsible_ma, i.e., it shows the task breakdown structure
together with the assigned Role class, for each Task class.

Figure 3: Recursive composite view for of class Analysis
(visible metaassociations subtask_ma and responsible_ma).
Not all the views are provided at each level. In particular, at
MetaTemplate level, the tool offers inheritance and simple
views; at Template level all views are offered; at Instance
level, inheritance views do not make sense, thus they are not
provided.

Queries
The tool supports two kinds of analysis mechanisms that can be
used at either Template or Instance level: check property
presence and check property absence. Check property presence
takes as input a MetaAssociation and shows those class pairs
related by those associations that are instances of the given
MetaAssociation. The user can choose to check this property
both on the current view and on the whole module.
Check property absence takes as input a MetaAssociation and
shows those classes that could participate to instances of the
given MetaAssociation but they do not. Again, the user can
choose to check this property on either a view or the whole
template.
For example one can ask for absence of input; this corresponds
to find those Task sub classes that are not directly connected by
associations input. Note that the same result could be achieved
by opening a recursive composite view on Analysis with
input_ma visible. The query mechanism is preferable to the
view one when a large portion of the template has to be
analyzed.

Instance Level
E3 v2 offers support for the Instance (also called Model) level.
An instantiated model can be automatically instantiated from a
template. Further it can be manually customized. A part of a
Template, denoted by a view, can be instantiated.

Figure 4: Recursive composite view for class Analysis (visible
metaassociations subtask_ma and input_ma).

3. MODELING THE IVECO PROCESS IN E3
This section introduces the input quality manual, it outlines the
E3 template, and finally discusses encountered problems and
lessons learnt.

Original description of the Iveco Quality manual
The input was a manual of 175 pages of text and pictures that
describes the software process of FIAT/Iveco. The software
process is a very general one, that covers all software life
cycles. FIAT/Iveco is a truck manufacturer that has an
information system department with circa 200 persons
developing administrative software.
In this section, we give a summary of the Iveco quality manual.
First, we describe the main phases and their interaction,
second, the document format, then, verification and validation
issues. Finally, we describe in more detail one of the phases.

The main phases
The manual defines 10 main phases and for each phase it
identifies:
§ the role the responsible person must play;
§ the main output documents and their semantic and

syntactic standards;
§ goals, concepts, and rules;
§ description of the respective verification and validation

(V&V) phase in terms of activities;
§ techniques, tools, and responsibility.
The Iveco manual describes activities and responsibilities.
Input documents for phases are not defined.
Figure 5 reproduces a table from the original quality manual. It
displays process roles (on columns) and process phases (on
rows). An «R» at the cross of column rolei with row phasej
denotes that rolei is responsible for phase phasej while a «P»
denotes participation. Arrows denote flow of information from
one role to another.

Figure 5: Responsibility table.
The roles of the persons responsible for the V&V activities are
spread in activity descriptions. Finally, the manual describes a
number of tools, along with some instructions and advises
about their usage, and a few techniques, along with their
suitability for being used in various activities.

Documents
The format of textual documents is described as displayed
below. The quality manual is written following this standard
template that is described in the manual itself.

Title
authors:
reviewers:
document code:
language:
version:
reference project:
class:
date:

Table of contents
X Name of Chapter
.X Name of SubChapter
.XX Name of Paragraph
.XXX Name of SubParagraph

Verification and Validation
An entire section of the manual is devoted to the description of
a general V&V methodology that must be applied to the
products of any activity. For each production phase, there must
be a V&V phase. Each V&V phase is described with its:
§ goals (quality attributes);
§ respective production phase;
§ tools.

Phase Logic Analysis and Modeling
A summary of the description of phase Logic Analysis and
Modeling, as it is written in the Iveco quality manual, is
summarized below. Here we call this phase Analysis. The
manual contains a detailed description of both the phase
outputs and exit conditions.
§ Goal: detailed description and validation of

system functional and non-functional requirements.
§ Method: structured analysis.
§ Techniques: DFD (Data Flow Diagram), ERD (Entity

Relationship Diagram), CFD (Control Flow Diagram).
§ Concepts: Abstraction, information hiding, process

decomposition, event list, data dictionary, temporal
constraints, hardware architecture.

§ Results: Requirements specification, Quality Plan.
Generally, the decomposition of the phases in subtasks is not
explicitly described in the manual; we inferred it from the final
and interim outputs of the phase.

The Iveco Process Template
The E3 process template of the Iveco quality manual
encompasses 161 user defined classes and 585 associations. No
user-defined metaassociations were needed as no other
connections other than those modeled by the E3
metaassociations were found in the manual. On the basis of our
experiences with other case studies [18] we believe that the
associations provided by E3 are sufficient to model almost
each connection in the context of software processes.
One way to present our Template is to start from Figure 6, that
describes task break down. Class Iveco in Figure 6 is
connected by associations subtask to 10 Task subclasses, each
denoting one of the 10 main phases identified in the Iveco
quality manual.

Figure 6: Composite view for class Iveco.
In Figure 6, the sequencing among the different phases is strict
and feedback’s are not allowed.
After inspecting the task break down, let us examine Figure 4
that gives the subinheritance view for class Phase. Each class
that inherits from Phase, e.g., Design, also inherits the
association involving Phase.
Figure 7 and Figure 8 show the composite views for the classes
AnalysisProd and AnalysisV&V which are the subactivities
constituting the task Analysis.

Figure 7: The Composite view for class AnalysisProd.

Figure 8: The Composite view for class AnalysisV&V.
Figure 9 gives the recursive composite view that defines the
structure of documents according to the description given in
the Iveco quality manual. Class Document is related by means
of definitions of associations aggregation to classes Title and
Chapter. The E3 PML does not impose any syntactic
constraints on attribute and method definitions. Therefore, they
can be either defined informally, or coded with an OO
language, e.g., Smalltalk, for subsequent simulation, or
implemented with an enactable OO PML, e.g., EPOS [14].

Figure 9: The Recursive composite view for class Document
(visible metaassociation aggregation_ma).

Consistency management
The storage, view, and query mechanisms of E3 p-draw enable
the modeller to query and browse a template. The modeller can
either define his own queries or use the set of predefined
queries. Examples of predefined queries are: check that each
task is assigned to a responsible role; that each product is
associated with a given quality attribute, etc..
This has helped in validating the template and implementing
consistency checks, such as find out which output are produced
but never used, which tasks do not have a well defined
responsible person, etc..
If we compare the E3 Iveco process template specification with
the informal description given in the Iveco quality manual, the
former has several advantages: 1) task sequencing is explicit;
2) task input/output are explicit; the description granularity
level is finer; 3) inconsistency have been detected and fixed.
The main source of inconsistencies in a quality manual is the
continuous change and adaptation of the manual itself that is
performed by different persons at different times. It is a well
known configuration management problem that a change to an
item may render non-consistent several other items that
depend, in some way, on the changed item. An explicit
representation of the dependencies among items, by means of
associations, facilitates the process of both removing
inconsistencies and maintaining a consistent definition. Also,
the different associations model different kinds of
dependencies among items, thus providing a basis for
maintaining the quality manual.
Some high level consistency constraints are enforced by the
PML, e.g., each activity must be connected to some higher

level ones, or must be the most high level one. Mentioned input
and output products, associated tools, and roles, must have
been declared before they are connected to an activity.

4. CONCLUSIONS

E3 is a research prototype which has been designed and
implemented to evaluate two main ideas: first, process models
are important as communication vehicles thought not
executable, second, modeling notations can be regarded as a
starting point for process modeling. From these initial ideas we
have developed a set of requirements and implemented two
versions of the E3 system.
Experience with the system validates our initial ideas and
enables us to range our requirements. A PML must offer
simple process specific constructs will well defined syntax.
Such constructs must also include associations, such as
relationships between activities (preorder and subtask) and
document flow. The meaning of such constructs must be
defined and clear in the context of the organization that use the
PML. The PML must enable a clear distinction among general
process models and project specific ones. A supporting process
modeling tool must provide support to create, retrieve, and
modify process models according to different perspectives.
These kinds of requirements can be offered by a simple process
modeling tool such as E3, or they can be integrated in a more
complex system which offers also other process support
facilities such as workflow management.
Ongoing and future work include further validation of the E3
system both in industrial and in academic settings.

5. REFERENCES

[1] Aoyama, M. Concurrent Development Process Model,
IEEE Software, Vol. 10, No. 4, July 1993, pages 46-56.
[2] Aumaitre, J. and Dowson, M. and Harjani, D. Lessons
learned from formalizing and implementing a large Process
Model, Proc. of the third European Workshop on Software
Process Technology, February 1994, Grenoble (France), pages
227-240.
[3] Baldi, M. and Jaccheri, M.L. Software Process Model
Specification, Proc. of the first IFIP/SQI International
Conference on Software Quality and Productivity: Theory,
Practice, Education and Training, December 1994, City
Polytechnic of Hong Kong, Hong Kong, pages 149-155.
[4] Bandinelli, S. and Fuggetta, A. and Lavazza, L. and Loi, M.
and Picco, G.P. Modeling and Improving an Industrial
Software Process, IEEE Trans. on Software Engineering, Vol.
21, No. 5, May 1995, pages 440-454.
[5] Barghouti, N.S. and Rosenblum D.S. and Belanger D.G.,
Two Case Studies in Modeling Real, Corporate Processes,
Software Process Improvement and Practice Journal, Vol. 1,
Num. 1, August 1995, pages 17-32.
[6] Cain, B. G. and Coplien, J.O. A Role-Based Empirical
Process Modeling Environment, 2nd International Conference
on the Software Process, February 1993, pages 125-135.
[7] Coad, P. and Yourdon, E., Object-Oriented Analysis,
Prentice Hall, Englewood Cliffs, 1991.
[8] Coad, P. and Yourdon, E., Object-Oriented Design,
Prentice Hall, Englewood Cliffs, 1991.
[9] Dion, R. Process Improvement and the Corporate Balance
Sheet, IEEE Software, Vol. 10, No. 4, July 1993, pages 28-36.
[10] D. W. Embley and R.B. Jackson and S.N. Woodfield, OO
Systems Analysis: Is It or Isn't It?, IEEE Software, Vol. 12,
No. 4, July 1995, pages 18-33.
[11] E3 Web page,
http://www.idi.ntnu.no/~letizia/E3DIR/e3.html.
[12] Finkelstein, A. and Kramer, J. and Nuseibeh, B. Ed.
Software Process Modelling and Technology, Research Studies
Press Ltd., Tauton, Somerset, England, 1994.
[13] A. Goldberg and D. Robson, Smalltalk-80: The language
and its implementation. Addison Wesley, 1983.

[14] Jaccheri, M.L. and Conradi, R. Techniques for Process
Model Evolution in EPOS, IEEE Trans. on Software
Engineering, December 1993, Vol. 12, No. 19, pages 1145-
1156.
[15] Jaccheri, M.L. and Picco, G.P., and Lago, P., and Eliciting
Process Models in E3, ACM Transactions on Software
Engineering and Methodology, 7:4, October 1988, pages 368-
410.
[16] Kellner, M.I. and Hansen, G.A. Software Process
Modeling: A Case Study, Proc. of twenty-Second Annual
Hawaii International Conference on System Sciences, Vol. 2 -
Software Track, edited by B.D. Shiver, IEEE, January 1989,
pages "175-188.
[17] Mc Gowan, C.L. and Bohner, S.A, Model based Process
Assessment, Proc. of 15th IEEE Iternational Conference on
Software Engineering, Baltimora, MA, 1993, pages 202-211.
[18] Milano A., Modellazione di un processo industriale,
Master Thesis, Politecnico di Torino, in Italian.
[19] Project E3, associated documentation, and source code,
http://www.polito.it/~letizia.
[20] Rumbaugh, J. et al., Object-Oriented Modeling and
Design, Prentice Hall, 1991, 500 pages.

