

Profiling and Optimization of Software-Based Network-Analysis Applications

Loris Degioanni, Mario Baldi, Fulvio Risso, and Gianluca Varenni
Dipartimento di Automatica e Informatica

Politecnico di Torino
Corso Duca degli Abruzzi, 24 – 10129 Torino, Italy

{loris.degioanni, mario.baldi, fulvio.risso, gianluca.varenni}@polito.it

Abstract

A large set of tools for network monitoring and
accounting, security, traffic analysis and prediction —
more broadly, for network operation and management —
require direct and efficient real-time access to data
traveling on the network. Software tools are often
preferred because of their low cost and high versatility.
However, these tools are often considered to suffer from
performance problems on high-speed networks. This paper
demonstrates that, despite the common belief, the
performance limits for software real-time network analysis
tools are still far from being reached and it can even
improved with limited hardware support. This work
analyzes the performance of a widely used library for
network analysis, WinPcap, highlights its bottlenecks, and
proposes some solutions that almost double the overall
speed, thus enabling the deployment of software-based
tools on high speed networks.

1. Introduction

The capabilities of modern networks are growing
constantly, along with their bandwidth and their
complexity. Operations like monitoring, troubleshooting,
and securing a network are becoming more complex, and
require both high levels of competence and specialized
tools. Some of these tools (like network analyzers,
firewalls and monitoring-capable devices) are based on
proprietary hardware. However, hardware solutions are
usually expensive, difficult to deploy (e.g., hardware
cannot be duplicated and easily moved) and they have a
low degree of flexibility compared to software solutions.

So far, a fairly large number of software-based solutions
(often implemented as extensions to a standard operating
system) for providing software applications with real-time

access to raw network data have been proposed. These
solutions are usually implemented as libraries, like the
well-known libpcap [1] and WinPcap [3], which are
available on a large number of operating systems (OSes).
These libraries export a set of primitives that allow
applications to interact with the network without the
intermediation of any other layer. Software components
are easy to deploy and very flexible: a single packet
capture component can provide low-level access to a wide
range of applications (e.g. firewalls, NAT, sniffers,
network monitors, etc.). Moreover they are inexpensive
and can be updated easily, which is the reason for many
professionals preferring software tools for monitoring and
analyzing networks. However, performance is the
Achilles’ heel of software-based tools, which makes
hardware solutions a must when dealing with high-speed
networks. Although current CPUs are very powerful, there
is still no way to perform software real-time traffic
analysis on a links operating at multi-gigabit speeds.

Despite a certain degree of high-level research by
several teams all around the world (notably [10], [13]),
improving the overall performance of a network analysis
tool is still an open issue. The biggest problem of current
approaches is that they focus on some specific components
of traffic analysis (for example packet filtering) and
propose solutions for improving the performance of these
functions. The outcome of this work shows that this
approach is not effective given that users are interested in
the performance of the whole traffic analysis system rather
than a single component. Specifically, this work identifies
the components involved in network analysis and measures
their relative weight. A set of optimizations is then
implemented in an experimental version of the WinPcap
library and tested with the aim of quantifying the
improvement. As shown by the obtained figures,
optimizing a component that accounts for a small

percentage of the overall system performance is not
particularly beneficial from the end-user point of view.

This paper is organized as follows. Section 2 provides
an overview of related research activities. Section 3
describes the architecture of WinPcap as an example of a
typical component that extends the OS to permit raw-
access to the data traveling on the network. Section 4
presents the results of a detailed performance evaluation by
characterizing each component involved in software
analysis, including capture-specific components, OS and
application-level aspects. Section 5 shows a set of
optimizations, quantify their relative importance, and
measures how they affect the overall capture process.
Finally, conclusive remarks are made in Section 6.

2. Related Work

The CMU/Stanford packet filter [14] (or CSPF) is the
first publicly available system for packet filtering and user-
level access to the data-link layer and ancestor of most
current solutions. It introduced, among other things, the
concept of a filtering virtual machine, which is basically a
virtual CPU (with registers, etc.) with a compact and
efficient instruction set targeted to packet filtering. A filter
is compiled to a small program executable on the virtual
machine.

One of the most important advances in the field is due
to McCanne and Van Jacobson who published the
Berkeley Packet Filter (BPF) [2] in 1993. This improves
CSPF by limiting the number of copies packets undergo
and by defining a new, more efficient, register-based
virtual processor with a small but complete instruction set
(i.e. basically load, store, compare and jump instructions).
BSD-derived OSes still provide BPF as a default capture
facility; other systems have compatible implementations as
well. The BPF virtual processor is the preferred base for
the libpcap library.

The Mach Packet Filter (MPF) [9], PathFinder [12],
DPF [11], BPF+ [10] are examples of works focusing on
improving traffic analysis performance by focusing on the
filtering process. Packet classification [15], another traffic
analysis component that is conceptually very similar to
packet filtering, got a lot of attention also because of its
role in the packet forwarding process within routers.

On the other side, only a few works focus on other
aspects of packet capture, like buffering and copying. The
NFR team proposed an enhanced version of BPF with a
bigger buffer and examined the possibility to use a shared
buffer to prevent packets from being copied twice [13].
WinPcap [3], an open-source Windows library, improves
libpcap by implementing a more efficient buffering
system with respect to the memory occupancy. However,
no previous work focused on the whole analysis process,
which is the objective of this paper. The obtained results
show how existing optimizations account only for a small

percentage of the overall cost, in terms of execution time,
of the capture process.

3. Packet Capture Architectures

This Section defines the model used in the context of
this work by identifying the components of a typical
architecture for packet capture and traffic analysis.
Particularly, we focus on the path followed by a packet
that is received by the Network Interface Card (NIC),
transferred to the workstation main memory, and to the
final application through the intermediation of a device
driver and the OS. Even though the NPF (NetGroup Packet
Filter) [3] architecture, which is derived from BPF and
embedded in the WinPcap library, is often specifically
referred to, the basic principles are common to many other
solutions. The steps, and involved components, required by
WinPcap to process an incoming packet and deliver it to
the application are shown in Figure 1 and Figure 2.

3.1. Network Card and NIC Device Driver

Modern NICs have a truly limited amount of on-board
memory, usually a few Kbytes. This memory is required to
enable the receiving and sending packets at the full link
speed, independently of the host workstation capabilities.
Moreover, NICs perform some preliminary checks, such as
CRC errors, short Ethernet frames, while packets are
stored in the on-board memory so that invalid frames can
be discarded immediately.

Application

Other
protocol
stacks

Network Interface Card Driver

filter1

Packets

tap()

Netgroup
Packet
Filter

Kernel
Level

Network Interface

User
Level user-buffer

NPF
Buffer1

filter2

NPF
Buffer2

Application

user-buffer

Timestamp Timestamp

Copy Copy read()

Copy Copy

NIC driver Packet Buffer

…

Figure 1. NPF Structure.

After a valid packet has been received by the NIC, this
generates a request toward the bus controller for a bus-
mastering data transfer. At this point, the NIC takes control
of the bus, transfers the packet to the NIC buffer in the

workstation’s main memory (see Figure 2), releases the
bus, and generates a hardware interrupt toward the
Advanced Programmable Interrupt Controller (APIC) chip.
This chip wakes up the OS interrupt handling routine,
which triggers the Interrupt Service Routine (ISR) of the
NIC device driver.

The ISR of a well-written device driver has little to do.
Basically it checks if the interrupt relates to itself (a single
interrupt can be shared among several devices in x86
machines) and acknowledges it. Then, the ISR schedules a
lower-priority function (called Deferred Procedure Call,
or DPC) that will later process the hardware request and
notify the upper-layer drivers (i.e., protocol layer drivers,
packet capture drivers) that a packet has been received.
The CPU will process the DPC routine when no interrupt
requests are pending. Interrupts coming from the NIC are
disabled when a NIC device driver is performing its work,
because the processing of a packet has to be completed
before the next one is served. Moreover, since interrupt
generation is a very costly operation, modern NICs allow
more than one packet to be transferred in the context of a
single interrupt, so that an upper-layer driver is able
process several packets each time it is activated.

RAM DPC

NIC buffer Kernel buffer

NIC = network interface card
DPC = deferred procedure call

Capture
Driver RAM

User level
applicationsNIC

Figure 2. Path from NIC to applications.

3.2. Packet Capture Driver

Packet capture components are usually transparent to
other software modules like protocol stacks, thus not
influencing the standard system’s behavior. They just
insert a hook in the system so that they can be notified —
usually through a callback function called tap() — as
soon as a new packet arrives from the network. Packet
capture components are usually implemented as network
protocols drivers in Win32.

The first action performed by the tap()is filtering, i.e.
packets are analysed to detect whether they are interesting
for the user. Being derived from the BPF, the filtering
engine of NPF is a virtual processor with a simple set of
instructions that is able to perform some basic processing
on a generic buffer of bytes — the packet dump. WinPcap
(and libpcap) provides a user level API that transforms
a high level expression (e.g. “pick up all UDP packets”)
into a set of pseudo instructions (e.g. “if the ethertype
field of the Ethernet header is IP and the protocol
type field of the IP header is equal to 17, then return

true”) and sends them to the filtering machine, activating
it. The presented architecture applies the filter to the packet
while it is still in the NIC driver’s buffer, thus avoiding
further copies of non-conformant packets, although they
already consumed bus resources because the have been
transferred into the system memory.

Packets accepted by the filter are associated with
physical layer information, such as length and reception
timestamp, that might be useful for applications accessing
and processing them. Packets are then copied into a buffer,
usually known as kernel buffer, that stores packets
awaiting to be transferred to user-level (see Figure 2). The
size and the architecture of this buffer are important
parameters for the performance of the capture process. For
instance a large and well-engineered buffering system is
able to compensate for the slowness of user-level
applications during bursts and to reduce the number of
system calls required to transfer data from the capture
driver (i.e. kernel buffer) to the application.

User-level applications retrieve packets from the kernel
buffer by means of a read-like system-call. When NPF is
deployed, this call triggers the invocation of the hook
function read() (see Figure 1), which checks the status
of the NPF kernel buffer: if the buffer is not empty, its
content is transferred to a user-allocated memory, indicated
as user-buffer in Figure 1. The application is awoken as
soon as the data has been copied to user-level so that it can
begin processing the packets.

4. Performance evaluation

This section presents the results of a detailed
measurement campaign on a network analysis system. The
objective is to determine the efficiency of the capture
process as a whole and the exact amount of resources
required by each of the components described in Section 3.

In order to be as general as possible, processing costs
are expressed in CPU clock cycles. In fact, this
measurement unit can be used to compare the performance
of significantly different systems because it does not
depend on absolute time and CPU speed.

4.1. Testbed

Figure 3 shows the testbed used for the profiling: two
PCs directly connected through a Fast Ethernet link. One
PC acts as traffic generator, while the other is used for the
actual tests and has been installed with a modified version
of WinPcap that includes profiling extensions for
measurement purposes. Particularly, profiling extensions
make use of performance monitoring counters available in
the Pentium family of microprocessors [5] [6]. Every
processor of this family has a certain number of internal
counters (whose type and number varies according to the
processor model) that can be programmed to keep track of

events such as the number of instructions decoded, the
number of interrupts received, the number of cache loads,
and more. For example, the CPU_CLK_UNHALTED
counter stores the number of effective clock cycles spent
by the CPU in a given time interval, discriminating
between the ones consumed at user-level and the ones
consumed at kernel-level. A program can retrieve these
counters by means of the rdpmc instruction.

Another profiling extension makes use of a custom
Dynamic Link Library (DLL) that can be used by a kernel
driver to measure the CPU clocks required by a specific
portion of code. This library uses the rdtsc (ReaD Time-
Stamp Counter) x86 instruction to determine the exact
amount of clock ticks consumed by the CPU during the
execution of the given code.

Finally, profiling extensions use sampling techniques
available though the Intel Vtune Performance Analyzer
[16]: the CPU is frozen at precise intervals and its state is
inspected to determine which driver/function is being
executed. This sampling process, continued over a
significant amount of time, gives a statistical insight on
which software modules are involved into packet capture
and their relative weight.

The two PCs are equipped with network adapters from
different vendors. A 3Com 3C996 Gigabit Ethernet
network card, operated at 100 Mb/s to avoid saturation of
the host computer hardware, was used most of the times
because of its excellent performance. Some detailed
analysis was performed also on an Intel 85527 Fast
Ethernet adapter because of the availability of the source
code of its driver, which was provided by Microsoft in the
Driver Development Kit [7]. This is one of the few cases in
which the source code of a NIC driver for Windows is
available and allowed a more precise study of performance
and bottlenecks.

Packet
Capture

Traffic
Generator

Sender Receiver

Dual Xeon-2,2Ghz
1GB RAM, 60GB HD,
3Com 3C996 Gigabit copper adapter

Pentium IV-2Ghz
1GB RAM, 40GB HD,
3Com 3C996 Gigabit Ethernet copper adapter
(or) Intel 82557 Fast Ethernet copper adapter

Figure 3. Testbed.

A traffic generator tool able to generate bursts of
packets with precise frame rate is installed on one of the
PCs. The generated traffic is directed to a non-existent host
on the network so that the protocol stacks of the two PCs
are not affected by the traffic. Both PCs were running
Microsoft Windows XP Professional. Tests were carried
on at different packet rates, although most of them refer to
the maximum number of frames per seconds allowed on a
Fast Ethernet link (148809 frames/sec, with 64 bytes frame

size), which is the worst operating conditions for a packet
monitoring and analysis tool in terms of CPU processing.

Test traffic pattern is fairly simple (constant frame rate)
because our objective is to test the software under the
maximum load for long period of time. Thus, more
realistic traffic patterns (e.g. variable size busts, Poisson
arrival rates, etc) are out of scope since they represent a
better operating condition compared to our choice.

4.2. External processing cost

Processing a packet involves several components, like
the NIC driver and the OS, which are not strictly part of
the capture architecture. The cost associated with the
intervention of such components, in terms of the time they
require to process a packet, is called external processing
cost and is shown to be of primary importance.

4.2.1. Operating System
The OS is the first software component involved when

the network card receives a packet. The cost of OS
processing varies with the packet rate, but it is mostly
proportional to the number of interrupts, which is the
mechanism used by the NIC to inform the system that a
packet has been received and it is waiting for processing.
Particularly, every interrupt requires approximately 2700
clock cycles on our test machine. In the tests, the 3Com
NIC generated 2999 interrupt/sec at 148K fps, which
correspond to an average of 54 clock cycles per frame.
This cost varies with different adapters and frame rates,
and is due to the OS kernel for performing operations like
interrupt handling. For instance, with the adapters under
test, three OS functions account for a remarkable amount
of clock cycles: HalBeginSystemInterrupt() (that
raises the current interrupt level and masks the interrupt
controller), KeDispatchInterrupt() (that executes
the DPC routine of the NIC driver) and
KeInitializeInterrupt(), that is undocumented
(but it will probably decrease the current interrupt level
and un-mask the interrupt controller).

4.2.2. NIC and device driver
Although the network card performs its job without

requiring any effort from the central CPU, its behavior can
influence some other components, notably the OS and the
device driver processing. For instance, the number of
interrupts to be served (which influence the OS cost) and
the number of I/O operations to access registers on the NIC
(which influence the device driver cost) have a significant
impact on performance. Referring to the latter cost, the
ISR function (which is usually called once for each
interrupt and it is the first function of the device driver) is

very simple but quite costly (about 850 clock cycles1)
because it performs a couple of I/O operations on the NIC
to signal that the driver is currently handling some packet.

Performance can be improved by being able to retrieve
several packets from the NIC buffer in response to a single
interrupt if the load exceeds a certain value. This decreases
the OS cost (smaller number of interrupt) and the driver
cost (smaller number of I/O operations on the card). The
obtained results show that the number of packets per
interrupt transferred grows about linearly with the network
load. For instance, the 3Com NIC reaches an average value
of 49.61 frames served per interrupt (corresponding to
2999 interrupt/sec) when receiving 148K frames per
second. This means that the relative overhead of low-level
components (interrupt handling, NIC driver) on packet
processing is higher for low packet rates and becomes
progressively less significant for growing packet rates.

 According to our tests, the cost per packet of the NIC
driver (at the maximum rate of 148809 packets per second)
when used in conjunction with WinPcap, with no other
protocols active on the machine, is 2260 clock cycles with
the Intel 85527 adapter and 1497 clock cycles with the
3Com 3C996 adapter.

Finally, there is an additional cost that cannot be
quantified. Packets are transferred from the NIC card to the
main memory through a bus-mastering transfer, which
does not consume CPU clocks. However, the bus (which is
a resource anyway) is busy during the transfer. For high
loads this can be a non-negligible cost even if this process
does not consume (apparently) any CPU clocks, because
the bus is unavailable and it can delay CPU requests.

4.3. Capture driver

This Section analyses the cost of all components of the
capture driver, i.e., the cost of the packet path from the
NIC device driver (and OS) to the user-level application.

4.3.1. Filtering process
The filtering process deserves particular attention,

because it is the only component that handles all incoming
packets. Obviously, its cost depends not only on the
efficiency of the filtering engine, but also on the
complexity of the filter, i.e., on the number of checks that
are to be done on each packet. Figure 4 shows the cost of
three filters (in order of increasing complexity): a simple
one that accepts only IP packets (it requires the execution
of 3 pseudo-instructions of the NPF virtual processor), one
that checks the packet’s TCP port against 5 different
values (21 pseudo-instructions), and a more complex one
that checks the packet against 10 IP addresses and 10 TCP
ports (50 pseudo-instructions).

1 Since this cost depends solely on the NIC and the system bus
architecture, it has no relationship with clock cycles. However, we use
this measurement unit for coherence with the rest of the paper.

Packets are generated so that all the filtering code must
be executed before the filter returns. As expected, the
number of clock cycles grows linearly with the number of
instructions, as shown in Figure 4. Typical filters require a
few hundreds clock cycles.

131

585

1063

0

200

400

600

800

1000

1200

3 instructions 21 instructions 50 instructions

Clock Cycles

Figure 4. Filters with different complexity.

4.3.2. Memory copies
As explained in Section 3, every packet is copied twice

in the main memory before reaching the user (Figure 1):
the first copy transfers the packet from the NIC buffer to
the kernel buffer (Figure 2), the second one transfers it in
the user-application buffer. Figure 5 shows the cost of the
two copies, in CPU cycles per byte, on the machine under
test.

According to the NDIS specification, the first copy is
performed by the NdisTransferData() function. The
cost of this function is particularly high for two reasons.
1. Some additional overhead is required before the

copying process. According to the DDK documentation
[7] a driver must use this function since the whole
packet could not be available when the NIC driver
leaves the control to the packet driver. Thus, this fun-
ction first checks whether the whole packet has been
transferred in memory by the NIC; if not, it waits until
the transfer is complete.

2. The function operates on data that is not in the CPU
cache. The packet to be copied has just been transferred
from the NIC on-board memory to the main memory
by means of a bus-mastering transfer (see Section 3.1).
Previous points explain the cost of the first copy as

shown in Figure 5: some constant processing is due
independently to the amount of data that has to be
transferred (this explain higher costs per bytes in case of
small packets). For larger packets, these costs are spread
over a larger mount of data, accounting for a smaller value
for each byte transferred.

The second copy uses a standard C library function
(such as memcpy()). Its results are comparable with the
ones obtained when copying mostly non-cached user level
memory buffers, since most packets in the kernel buffer
are not in the CPU cache. The cost per byte slightly
increases because the larger the packet is, the higher the

probability not to have it in cache (at least partially). The
cost per byte increases also according to the kernel buffer
size. For instance, if the amount of data in the kernel buffer
is small, there is a higher probability that most of it is still
in the CPU cache since its transfer from the NIC buffer
during the first copy.

Summarizing, the cost of the first copy varies between
540 and 10500 clock cycles per packet, while the one of
the second copy varies between 259 and 8550 clock cycles
per packet. Actually, considering a 20 bytes header
(containing a timestamp, the packet length and other
information) that is added to each packet before storing it
in the kernel buffer, the total cost of the second copy varies
between 364 and 8664 clock cycles per packet.

0

2

4

6

8

10

12

64 100 256 512 1024 1500

Packet Size

C
lo

ck
s

pe
r b

yt
e

Cost of the first copy

Cost of the second copy

Figure 5. Cost per byte of memory copies with
different packet sizes.

4.3.3. Interaction with the application
All the interactions between the application and the

packet driver are done via system calls. Windows provides
the ReadFile(), WriteFile() and DeviceIo-
Control() system calls for I/O purposes. All these calls
involve two context switches2: the first one transfers the
execution from user level (the application) to kernel level
(the driver), the second one returns the control back to user
level.

The context switch is well known as being a complex (it
usually involves the generation of an interrupt and the
initialization of some OS data structures) and therefore
costly process. On the machine deployed for our
measurements, a read()-like system call requires 33500
clock cycles. Such a high cost makes copying a single
packet per system call very ineffective; therefore the
capture driver transfers blocks of packets each time an
application invokes a system call. The number of packets
transferred within a system call is determined by the
occupation of the kernel buffer and grows proportionally
with the CPU load. This, in turn, depends on the

2 The term context switch is used improperly here, since a transfer
from user level to kernel level is actually a privilege level switch and does
not necessarily implies a switch of the execution context.

complexity of the user-level application (if an application
requires a long time to process packets, it retrieves data
from the kernel buffer at long time intervals and the kernel
buffer is not adequately drained) and on the cost of the
capture driver processing (this code runs at higher priority,
therefore the kernel buffer is constantly filled up).

Since the frequency of the read operations, and hence
the number of packets retrieved per call, are highly
variable, a general characterization of the operation cost in
clock ticks per packet is not possible. On an overloaded
machine (i.e. 100% CPU usage) receiving minimum-size
frames, the capture driver transfers 256 Kbytes per system
call3, corresponding to 3200 packets (including the 20
bytes header added by the driver). In this situation the
average cost of a context switch per packet is
approximately 10 clock cycles, which is negligible given
the cost introduced by other components.

4.3.4. Other processing components
Although the general feeling is that a capture driver

spends most of its execution time in filtering and copying
packets (and this explains why almost all the performance
improvement work in literature focuses on one of them),
our profiling revealed that other factors significantly affect
the cost of capturing a packet. Among them, timestamp
gathering is the most remarkable.

The NPF driver obtains the timestamp for a packet
through the KeQueryPerformanceCounter()
Win32 function, which is the only kernel function that
provides a time reference with microsecond precision. The
cost of this function is very high because it has to interact
with the system timer chip: approximately 1800 clock
cycles4 on the machine used in this work. Paradoxically,
this function requires multiple microseconds to return a
result with an accuracy of a microsecond. However, this
bias is almost constant, therefore this timestamp can be
considered a valid measure of their arrival time.

Additional costs include the interaction with NDIS and
with the kernel (most of these interactions make use of
callback functions, which are costly mechanisms), the
management (mapping and unmapping) of memory buffers
in use in the kernel, and the creation of the header that
NPF adds to every packet. In summary, the costs
associated to the execution of a packet driver, excluding
filtering and copying amount to about 830 clock cycles.

4.4. Total processing cost

Figure 6 shows a summary of the results presented in
current Section by plotting the relative cost of each
operation relative to the processing of 64 byte packets at

3 This value is an upper bound chosen by the current WinPcap.
4 The cost of this function has been measured on several single-

processor machines with equivalent results.

148 Kfps. Results have been obtained with the 3Com
3C996 Gigabit adapter and the 21 pseudo-instruction filter;
the total cost to process a packet is 5680 clock cycles.

Figure 6. Details of CPU clock cycles.

As it is evident from Figure 6, the costs associated to
the timestamp gathering and to the NIC driver are
predominant in case of short packets. Since both costs
depend mostly on the hardware, software optimizations are
useless in their respect. Some minor optimizations are
possible into NIC drivers, but they are usually made
unfeasible by vendors because they do not publicly release
the source code of their Win32 drivers. In any case, NIC
driver optimizations are far less useful than a more
intelligent chipset on the NIC card.

Most notably, Figure 6 shows how most optimizations
present in the literature, which focus on copying and
filtering, aim at reducing a cost that accounts only for 15%
of the total processing time, which is a very limited value
indeed.

Considering mostly short packets for analyzing
performance is not a limitation of the current work. For
instance, a large set of network analysis tools (notably,
sniffers and network monitors) requires only the initial part
of the packet, e.g. the first 98 bytes, so that the capture
driver will discard all the remaining of the packet. This
confirms our assumption that the profiling has to be done
considering particularly short packets.

4.5. Extending the validity of the results

Although presented results refer to a specific tool
(WinPcap) on a specific platform (Win32), their validity is
more general. The costs related to WinPcap (namely the
tap processing, first and second copies, filtering) are quite
similar to the same costs on other architectures (for
instance, NPF is quite similar to BPF). A similar rational is
behind costs related to the operating system: NIC driver,
timestamp gathering, and context switch. NIC driver costs
may be reduced by a network card design that pushes in
hardware some of the operation normally done in software,
but this could be rather expensive. Hardware-based
timestamp gathering in one of the most viable

optimizations: the widely used DAG cards from Endace
[17] provide such an example. For instance, Intel-based
hardware does not have any simple way to get sub-
microseconds timestamps because of the lack of
specialized chips in the x86 reference design and more
precise timestamps must be gathered by interpolation (e.g.
by means of the CPU hardware counters). In addiction,
microsecond precision involves reading data from the
8253/8254 chips (or equivalent), whose access is rather
slow because they require IN/OUT operation through the
system bus.

For the last point, the context-switching impact is
negligible and it does not change considerably among
different operating systems (because, for instance, is one of
the most carefully optimized parameter in modern
operating systems).

5. Optimization

This Section presents and evaluates optimizations that
have been implemented in the NPF with the purpose of
limiting bottlenecks highlighted in the previous Section.

5.1. Filtering process

The filtering system used by WinPcap, the BSD Packet
Filer (BPF), was proposed in 1993 in [2]. Several other
filtering systems exist in literature [9] [10][11][12], but
their speedup with respect to the BPF is negligible in the
most common operating conditions.

0

50

100

150

200

250

3 instructions 21 instructions 50 instructions

C
lo

ck
 C

yc
le

s

100

200

300

400

500

600

%
 s

pe
ed

up

Clock Cycles - jit % speedup
Figure 7. Cost and speedup of three filters

with different complexity using JIT compilation.

Among the solutions to optimize BPF, dynamic code
generation (i.e. the translation of packet filters into CPU-
native executable code) guarantees impressive
performance improvements according to [11] and [10].
Therefore, a Just In Time (JIT) engine that translates BPF
filters into 80x86 binary code, was implemented and
incorporated in the NPF. As shown in Figure 7, the
speedup brought by this optimization varies from 3.1 to 5.
This corresponds to an 8% improvement of the total
capturing cost (with a 21 pseudo-instruction filter).

5.2. Memory copies

As stated before, the cost of the first packet copy (from
the NIC memory to the kernel buffer) is higher than the
second. One reason is the additional processing incurred
by the NdisTransferData(). However, we noticed
that almost all the network controllers (hence the vast
majority of network adapters) transfer a whole packet in
memory before notifying the NIC driver, therefore the
NPF driver receives it in a single contiguous buffer. In this
case, it is possible to copy it with a standard C library
function, with the result shown in Figure 8, otherwise the
old method is used. The second copy is still a bit faster
because of the higher probability that data is in the CPU
cache and because the packets are moved in blocks rather
than one at a time. However, the cost of the two copies is
comparable and presents similar trends.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

64 100 256 512 1024 1500

Packet Size

C
lo

ck
s

pe
r b

yt
e

Cost of the first copy

Cost of the second copy

Figure 8. Cost per byte of memory copies with

different packet sizes.

Thanks to this optimization the average cost of the first
copy decreases from 540 to 300 clock cycles per 64 byte
packet on a fully loaded machine, while the cost of the
second copy remains unchanged. This corresponds to a 4%
improvement of the total capturing cost.

5.3. Timestamp

The usage of KeQueryPerformanceCounter()to
obtain a timestamp with a microsecond precision can be
avoided thanks to the TimeStamp Counter (TSC) included
in most 32-bit Intel processors. This high performance
counter is incremented at every processor clock cycle, so
its precision is equivalent to the CPU frequency. The x86
assembler provides a very fast (one-cycle) instruction to
obtain this timestamp, rdtsc. The cost of timestamp
collection with rdtsc is 270 clock cycles, mainly due to
two 64-bit divisions that are necessary to convert it into a
standard struct timeval value. This optimization has
a speedup of 6.6 corresponding to a 27 % improvement of
the total capturing cost. However, this optimization is by
default disabled on the standard distribution of NPF

because of the strong dependence on the model (rdtsc
works only on Intel CPUs or compatible ones, such as
AMD ATHLON processors) and speed (some processors
adjust their frequency according to external parameters,
like the battery level) of the processor. However, this
demonstrates that the addition of a simple hardware-based
timestamp can improve the packet processing significantly.

5.4. Optimization of the tap() function

The use of standard C library memory copy routines
instead of NdisTransferData() also enables a
simpler tap() function. The process of transferring a
packet with NdisTransferData() requires the
allocation of a structure that will contain the packet during
the transfer and the provision of a callback function that
will be invoked when the copy is finished. Avoiding these
steps when NdisTransferData() is not used
significantly impacts performance. The simplification of
some points of the tap() processing reduces its cost from
830 to 560 clock cycles — a 5% improvement of the total
capturing cost.

5.5. Total processing cost with the optimizations

Figure 9 illustrates the cost for the kernel-level
processing of a 64 byte packet in the same conditions of
Figure 6 but with the optimizations presented in this
Section. The cost of the optimized processing is 3164
clock cycles, i.e., slightly more than half of the cost
without optimizations.

Figure 9. Details of CPU clock cycles.

It must be noted that 49 % of the CPU time is absorbed
by the NIC driver and by the kernel interrupt processing.
In fact, the cost of these two components is not affected by
the optimizations. The speedup of the other components
due to the optimizations is approximately 2.6.

5.6. Possible hardware speedups

Figure 9 shows that most of the costs are due to factors
that are outside the packet capture components. Endace

[17], a New-Zealand-based company, provides a set of
optimized cards for packet capture. Their card does not
have sophisticated hardware optimization, but they fix the
problems where they are, i.e. they limit the overheads of
the operating system. Basically, these cards generate a
timestamp (in hardware) for each packet received, and they
transfer the packet in the system memory, being clever
enough to manage the buffering mostly in hardware.
Applications (in user space) can read the data without any
other intermediate layers because operating system
structures (such as most of the work done by a NIC driver)
and the OS-native protocol stack are bypassed completely.

 Although we do not have any experimental data (these
cards are available only on Linux, while our measurement
infrastructure works only on Win32), we can see that their
packet-processing overhead is limited to the filtering, plus
some additional overhead that can be seen comparable
with the tap processing (buffer management cannot be
done totally in hardware and some interaction with the
kernel-space is needed). In this case, the total processing
cost can be estimated as about 670 clock ticks, which is a
speedup of 8.4 compared to the original system, and 4.7
compared to an optimized all-software system.

Such a limited hardware support can guarantee a new
life for software-based packet capture and analysis
applications.

6. Conclusions

This paper presents the results of the profiling and
optimization of the software chain at the basis of network
analysis and monitoring tools, e.g. a sniffer. The work
identifies the components involved in packet capture and
measures their cost in terms of CPU clock cycles required
for their execution. A valuable result of this study is the
quantitative conclusion that, contrary to common belief,
filtering and buffering are not the most critical factors in
determining packet capture performance. Optimization of
these two components, that received most attention so far,
is shown to bring little improvement to the overall packet
capture cost, particularly in case of short packets (or when
small snapshot length are needed). The profiling done on a
real system shows that the most important bottlenecks lie
in hidden places, like device driver, interaction between
application and OS, interaction between OS and hardware.

Thus, since packet capture encompasses various
interacting elements, optimizing it requires keeping in
mind the overall process rather than concentrating on a
single component. This paper shows that some limited
optimizations in the right place are far more noticeable
than architectural changes, such as some involving filtering
and buffering that were proposed in literature.
Furthermore, this work shows that the performance of
software-based traffic analysis can be pushed further
despite the fact that the employed technologies are

considered substantially mature, for example by means of
some limited hardware support like timestamp gathering,
or bypassing operating system overheads.

All the details and measurements made in the context of
this work are available on the WinPcap home page [8],
along with documentation, source code and examples.
Most of the presented optimizations are currently
implemented in version 3.0 of WinPcap.

Bibliography

[1] V. Jacobson, C. Leres and S. McCanne, libpcap, Lawrence Berkeley
Laboratory, Berkeley, CA. Initial public release June 1994.
Available now at http://www.tcpdump.org/.

[2] S. McCanne and V. Jacobson, The BSD Packet Filter: A New
Architecture for User-level Packet Capture. Proceedings of the 1993
Winter USENIX Technical Conference (San Diego, CA, Jan. 1993),
USENIX.

[3] Fulvio Risso, Loris Degioanni, An Architecture for High
Performance Network Analysis. Proceedings of the 6th IEEE
Symposium on Computers and Communications (ISCC 2001),
Hammamet, Tunisia, July 2001.

[4] Microsoft Corporation, 3Com Corporation, NDIS, Network Driver
Interface Specification, May 1988.

[5] Intel Corporation, IA-32 Intel ® Architecture Software Developer’s
Manual Volume 2: Instruction Set Reference, Order Number
245471-006.

[6] Intel Corporation, IA-32 Intel ® Architecture Software Developer’s
Manual Volume 3: System Programming Guide, Order Number
245472-006.

[7] Microsoft Windows Driver Development Kits (DDKs), available at
http://www.microsoft.com/ddk/.

[8] The NetGroup at Politecnico di Torino, WinPcap: WinPcap web
site, http://winpcap.polito.it/.

[9] M. Yuhara, B. Bershad, C. Maeda, J.E.B. Moss, Efficient Packet
Demultiplexing For Multiple Endpoints And Large Messages. In
Proceedings of the 1994 Winter USENIX Technical Conference,
pages 153-165, San Francisco, CA, January 1994.

[10] A. Begel, S. McCanne, S.L.Graham, BPF+: Exploiting Global Data-
flow Optimization in a Generalized Packet Filter Architecture,
Proceedings of ACM SIGCOMM '99, pages 123-134, September
1999.

[11] Dawson R. Engler, and M. Frans Kaashoek, DPF: Fast, Flexible
Packet Demultiplexing, in Proceedings of ACM SIGCOMM '96.

[12] Mary L. Bailey, Burra Gopal, Michael A. Pagels, and Larry L.
Peterson. PATHFINDER: A Pattern-Based Packet Classifier. In
Proceedings of the First USENIX Symposium on Operating Systems
Design and Implementation, pages 115–123, Monterey, CA,
November 1994.

[13] Marcus J. Ranum, Kent Landfield, Mike Stolarchuk, Mark
Sienkiewicz, Andrew Lambeth, and Eric Wall (Network Flight
Recorder, Inc.), Implementing a Generalized Tool for Network
Monitoring, LISA 97, San Diego, CA, October 26-31, 1997.

[14] Jeffrey C. Mogul, Richard F. Rashid, Michael J. Accetta. The
Packet Filter: An Efficient Mechanism for User-Level Network
Code. In Proc. 11th Symposium on Operating Systems Principles,
pages 39-51. Austin, Texas, November, 1987.

[15] Pankaj Gupta and Nick McKeown, Algorithms for Packet
Classification, IEEE Network Special Issue, March/April 2001, vol.
15, no. 2, pp 24-32.

[16] Intel Vtune Performance Analyzer, Intel Corporation, 2003. Demo
available at http://developer.intel.com/software/products/vtune/vpa/.

[17] Endace Measurement Systems, web site at http://www.endace.com.

	Introduction
	Related Work
	Packet Capture Architectures
	Network Card and NIC Device Driver
	Packet Capture Driver

	Performance evaluation
	Testbed
	External processing cost
	Operating System
	NIC and device driver

	Capture driver
	Filtering process
	Memory copies
	Interaction with the application
	Other processing components

	Total processing cost
	Extending the validity of the results

	Optimization
	Filtering process
	Memory copies
	Timestamp
	Optimization of the tap() function
	Total processing cost with the optimizations
	Possible hardware speedups

	Conclusions
	Bibliography

