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Abstract 
 

A large set of tools for network monitoring and 
accounting, security, traffic analysis and prediction — 
more broadly, for network operation and management — 
require direct and efficient real-time access to data 
traveling on the network. Software tools are often 
preferred because of their low cost and high versatility. 
However, these tools are often considered to suffer from 
performance problems on high-speed networks. This paper 
demonstrates that, despite the common belief, the 
performance limits for software real-time network analysis 
tools are still far from being reached and it can even 
improved with limited hardware support. This work 
analyzes the performance of a widely used library for 
network analysis, WinPcap, highlights its bottlenecks, and 
proposes some solutions that almost double the overall 
speed, thus enabling the deployment of software-based 
tools on high speed networks. 

1. Introduction 

The capabilities of modern networks are growing 
constantly, along with their bandwidth and their 
complexity. Operations like monitoring, troubleshooting, 
and securing a network are becoming more complex, and 
require both high levels of competence and specialized 
tools. Some of these tools (like network analyzers, 
firewalls and monitoring-capable devices) are based on 
proprietary hardware. However, hardware solutions are 
usually expensive, difficult to deploy (e.g., hardware 
cannot be duplicated and easily moved) and they have a 
low degree of flexibility compared to software solutions. 

So far, a fairly large number of software-based solutions 
(often implemented as extensions to a standard operating 
system) for providing software applications with real-time 

access to raw network data have been proposed. These 
solutions are usually implemented as libraries, like the 
well-known libpcap [1] and WinPcap [3], which are 
available on a large number of operating systems (OSes). 
These libraries export a set of primitives that allow 
applications to interact with the network without the 
intermediation of any other layer. Software components 
are easy to deploy and very flexible: a single packet 
capture component can provide low-level access to a wide 
range of applications (e.g. firewalls, NAT, sniffers, 
network monitors, etc.). Moreover they are inexpensive 
and can be updated easily, which is the reason for many 
professionals preferring software tools for monitoring and 
analyzing networks. However, performance is the 
Achilles’ heel of software-based tools, which makes 
hardware solutions a must when dealing with high-speed 
networks. Although current CPUs are very powerful, there 
is still no way to perform software real-time traffic 
analysis on a links operating at multi-gigabit speeds.  

Despite a certain degree of high-level research by 
several teams all around the world (notably [10], [13]), 
improving the overall performance of a network analysis 
tool is still an open issue. The biggest problem of current 
approaches is that they focus on some specific components 
of traffic analysis (for example packet filtering) and 
propose solutions for improving the performance of these 
functions.  The outcome of this work shows that this 
approach is not effective given that users are interested in 
the performance of the whole traffic analysis system rather 
than a single component. Specifically, this work identifies 
the components involved in network analysis and measures 
their relative weight. A set of optimizations is then 
implemented in an experimental version of the WinPcap 
library and tested with the aim of quantifying the 
improvement. As shown by the obtained figures, 
optimizing a component that accounts for a small 



percentage of the overall system performance is not 
particularly beneficial from the end-user point of view. 

This paper is organized as follows. Section 2 provides 
an overview of related research activities. Section 3 
describes the architecture of WinPcap as an example of a 
typical component that extends the OS to permit raw-
access to the data traveling on the network. Section 4 
presents the results of a detailed performance evaluation by 
characterizing each component involved in software 
analysis, including capture-specific components, OS and 
application-level aspects. Section 5 shows a set of 
optimizations, quantify their relative importance, and 
measures how they affect the overall capture process. 
Finally, conclusive remarks are made in Section 6. 

2. Related Work 

The CMU/Stanford packet filter [14] (or CSPF) is the 
first publicly available system for packet filtering and user-
level access to the data-link layer and ancestor of most 
current solutions. It introduced, among other things, the 
concept of a filtering virtual machine, which is basically a 
virtual CPU (with registers, etc.) with a compact and 
efficient instruction set targeted to packet filtering. A filter 
is compiled to a small program executable on the virtual 
machine. 

One of the most important advances in the field is due 
to McCanne and Van Jacobson who published the 
Berkeley Packet Filter (BPF) [2] in 1993. This improves 
CSPF by limiting the number of copies packets undergo 
and by defining a new, more efficient, register-based 
virtual processor with a small but complete instruction set 
(i.e. basically load, store, compare and jump instructions). 
BSD-derived OSes still provide BPF as a default capture 
facility; other systems have compatible implementations as 
well. The BPF virtual processor is the preferred base for 
the libpcap library. 

The Mach Packet Filter (MPF) [9], PathFinder [12], 
DPF [11], BPF+ [10] are examples of works focusing on 
improving traffic analysis performance by focusing on the 
filtering process. Packet classification [15], another traffic 
analysis component that is conceptually very similar to 
packet filtering, got a lot of attention also because of its 
role in the packet forwarding process within routers.  

On the other side, only a few works focus on other 
aspects of packet capture, like buffering and copying. The 
NFR team proposed an enhanced version of BPF with a 
bigger buffer and examined the possibility to use a shared 
buffer to prevent packets from being copied twice [13]. 
WinPcap [3], an open-source Windows library, improves 
libpcap by implementing a more efficient buffering 
system with respect to the memory occupancy. However, 
no previous work focused on the whole analysis process, 
which is the objective of this paper. The obtained results 
show how existing optimizations account only for a small 

percentage of the overall cost, in terms of execution time, 
of the capture process. 

3. Packet Capture Architectures 

This Section defines the model used in the context of 
this work by identifying the components of a typical 
architecture for packet capture and traffic analysis. 
Particularly, we focus on the path followed by a packet 
that is received by the Network Interface Card (NIC), 
transferred to the workstation main memory, and to the 
final application through the intermediation of a device 
driver and the OS. Even though the NPF (NetGroup Packet 
Filter) [3] architecture, which is derived from BPF and 
embedded in the WinPcap library, is often specifically 
referred to, the basic principles are common to many other 
solutions. The steps, and involved components, required by 
WinPcap to process an incoming packet and deliver it to 
the application are shown in Figure 1 and Figure 2. 

3.1. Network Card and NIC Device Driver 

Modern NICs have a truly limited amount of on-board 
memory, usually a few Kbytes. This memory is required to 
enable the receiving and sending packets at the full link 
speed, independently of the host workstation capabilities. 
Moreover, NICs perform some preliminary checks, such as 
CRC errors, short Ethernet frames, while packets are 
stored in the on-board memory so that invalid frames can 
be discarded immediately. 
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Figure 1. NPF Structure. 

After a valid packet has been received by the NIC, this 
generates a request toward the bus controller for a bus-
mastering data transfer. At this point, the NIC takes control 
of the bus, transfers the packet to the NIC buffer in the 



workstation’s main memory (see Figure 2), releases the 
bus, and generates a hardware interrupt toward the 
Advanced Programmable Interrupt Controller (APIC) chip. 
This chip wakes up the OS interrupt handling routine, 
which triggers the Interrupt Service Routine (ISR) of the 
NIC device driver. 

The ISR of a well-written device driver has little to do. 
Basically it checks if the interrupt relates to itself (a single 
interrupt can be shared among several devices in x86 
machines) and acknowledges it. Then, the ISR schedules a 
lower-priority function (called Deferred Procedure Call, 
or DPC) that will later process the hardware request and 
notify the upper-layer drivers (i.e., protocol layer drivers, 
packet capture drivers) that a packet has been received. 
The CPU will process the DPC routine when no interrupt 
requests are pending. Interrupts coming from the NIC are 
disabled when a NIC device driver is performing its work, 
because the processing of a packet has to be completed 
before the next one is served. Moreover, since interrupt 
generation is a very costly operation, modern NICs allow 
more than one packet to be transferred in the context of a 
single interrupt, so that an upper-layer driver is able 
process several packets each time it is activated. 
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Figure 2. Path from NIC to applications. 

3.2. Packet Capture Driver 

Packet capture components are usually transparent to 
other software modules like protocol stacks, thus not 
influencing the standard system’s behavior. They just 
insert a hook in the system so that they can be notified — 
usually through a callback function called tap() — as 
soon as a new packet arrives from the network. Packet 
capture components are usually implemented as network 
protocols drivers in Win32. 

The first action performed by the tap()is filtering, i.e. 
packets are analysed to detect whether they are interesting 
for the user. Being derived from the BPF, the filtering 
engine of NPF is a virtual processor with a simple set of 
instructions that is able to perform some basic processing 
on a generic buffer of bytes — the packet dump. WinPcap 
(and libpcap) provides a user level API that transforms 
a high level expression (e.g. “pick up all UDP packets”) 
into a set of pseudo instructions (e.g. “if the ethertype 
field of the Ethernet header is IP and the protocol 
type field of the IP header is equal to 17, then return 

true”) and sends them to the filtering machine, activating 
it. The presented architecture applies the filter to the packet 
while it is still in the NIC driver’s buffer, thus avoiding 
further copies of non-conformant packets, although they 
already consumed bus resources because the have been 
transferred into the system memory. 

Packets accepted by the filter are associated with 
physical layer information, such as length and reception 
timestamp, that might be useful for applications accessing 
and processing them. Packets are then copied into a buffer, 
usually known as kernel buffer, that stores packets 
awaiting to be transferred to user-level (see Figure 2). The 
size and the architecture of this buffer are important 
parameters for the performance of the capture process. For 
instance a large and well-engineered buffering system is 
able to compensate for the slowness of user-level 
applications during bursts and to reduce the number of 
system calls required to transfer data from the capture 
driver (i.e. kernel buffer) to the application. 

User-level applications retrieve packets from the kernel 
buffer by means of a read-like system-call. When NPF is 
deployed, this call triggers the invocation of the hook 
function read() (see Figure 1), which checks the status 
of the NPF kernel buffer: if the buffer is not empty, its 
content is transferred to a user-allocated memory, indicated 
as user-buffer in  Figure 1. The application is awoken as 
soon as the data has been copied to user-level so that it can 
begin processing the packets. 

4. Performance evaluation 

This section presents the results of a detailed 
measurement campaign on a network analysis system. The 
objective is to determine the efficiency of the capture 
process as a whole and the exact amount of resources 
required by each of the components described in Section 3. 

In order to be as general as possible, processing costs 
are expressed in CPU clock cycles. In fact, this 
measurement unit can be used to compare the performance 
of significantly different systems because it does not 
depend on absolute time and CPU speed. 

4.1. Testbed 

Figure 3 shows the testbed used for the profiling: two 
PCs directly connected through a Fast Ethernet link. One 
PC acts as traffic generator, while the other is used for the 
actual tests and has been installed with a modified version 
of WinPcap that includes profiling extensions for 
measurement purposes. Particularly, profiling extensions 
make use of performance monitoring counters available in 
the Pentium family of microprocessors [5] [6]. Every 
processor of this family has a certain number of internal 
counters (whose type and number varies according to the 
processor model) that can be programmed to keep track of 



events such as the number of instructions decoded, the 
number of interrupts received, the number of cache loads, 
and more. For example, the CPU_CLK_UNHALTED 
counter stores the number of effective clock cycles spent 
by the CPU in a given time interval, discriminating 
between the ones consumed at user-level and the ones 
consumed at kernel-level. A program can retrieve these 
counters by means of the rdpmc instruction. 

Another profiling extension makes use of a custom 
Dynamic Link Library (DLL) that can be used by a kernel 
driver to measure the CPU clocks required by a specific 
portion of code. This library uses the rdtsc (ReaD Time-
Stamp Counter) x86 instruction to determine the exact 
amount of clock ticks consumed by the CPU during the 
execution of the given code. 

Finally, profiling extensions use sampling techniques 
available though the Intel Vtune Performance Analyzer 
[16]: the CPU is frozen at precise intervals and its state is 
inspected to determine which driver/function is being 
executed. This sampling process, continued over a 
significant amount of time, gives a statistical insight on 
which software modules are involved into packet capture 
and their relative weight. 

The two PCs are equipped with network adapters from 
different vendors. A 3Com 3C996 Gigabit Ethernet 
network card, operated at 100 Mb/s to avoid saturation of 
the host computer hardware, was used most of the times 
because of its excellent performance. Some detailed 
analysis was performed also on an Intel 85527 Fast 
Ethernet adapter because of the availability of the source 
code of its driver, which was provided by Microsoft in the 
Driver Development Kit [7]. This is one of the few cases in 
which the source code of a NIC driver for Windows is 
available and allowed a more precise study of performance 
and bottlenecks. 
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Figure 3. Testbed. 

A traffic generator tool able to generate bursts of 
packets with precise frame rate is installed on one of the 
PCs. The generated traffic is directed to a non-existent host 
on the network so that the protocol stacks of the two PCs 
are not affected by the traffic. Both PCs were running 
Microsoft Windows XP Professional. Tests were carried 
on at different packet rates, although most of them refer to 
the maximum number of frames per seconds allowed on a 
Fast Ethernet link (148809 frames/sec, with 64 bytes frame 

size), which is the worst operating conditions for a packet 
monitoring and analysis tool in terms of CPU processing. 

Test traffic pattern is fairly simple (constant frame rate) 
because our objective is to test the software under the 
maximum load for long period of time. Thus, more 
realistic traffic patterns (e.g. variable size busts, Poisson 
arrival rates, etc) are out of scope since they represent a 
better operating condition compared to our choice. 

4.2. External processing cost 

Processing a packet involves several components, like 
the NIC driver and the OS, which are not strictly part of 
the capture architecture. The cost associated with the 
intervention of such components, in terms of the time they 
require to process a packet, is called external processing 
cost and is shown to be of primary importance. 

4.2.1. Operating System  
The OS is the first software component involved when 

the network card receives a packet. The cost of OS 
processing varies with the packet rate, but it is mostly 
proportional to the number of interrupts, which is the 
mechanism used by the NIC to inform the system that a 
packet has been received and it is waiting for processing. 
Particularly, every interrupt requires approximately 2700 
clock cycles on our test machine. In the tests, the 3Com 
NIC generated 2999 interrupt/sec at 148K fps, which 
correspond to an average of 54 clock cycles per frame. 
This cost varies with different adapters and frame rates, 
and is due to the OS kernel for performing operations like 
interrupt handling. For instance, with the adapters under 
test, three OS functions account for a remarkable amount 
of clock cycles: HalBeginSystemInterrupt() (that 
raises the current interrupt level and masks the interrupt 
controller), KeDispatchInterrupt() (that executes 
the DPC routine of the NIC driver) and 
KeInitializeInterrupt(), that is undocumented 
(but it will probably decrease the current interrupt level 
and un-mask the interrupt controller). 

4.2.2. NIC and device driver 
Although the network card performs its job without 

requiring any effort from the central CPU, its behavior can 
influence some other components, notably the OS and the 
device driver processing. For instance, the number of 
interrupts to be served (which influence the OS cost) and 
the number of I/O operations to access registers on the NIC 
(which influence the device driver cost) have a significant 
impact on performance. Referring to the latter cost, the 
ISR function (which is usually called once for each 
interrupt and it is the first function of the device driver) is 



very simple but quite costly (about 850 clock cycles1) 
because it performs a couple of I/O operations on the NIC 
to signal that the driver is currently handling some packet. 

Performance can be improved by being able to retrieve 
several packets from the NIC buffer in response to a single 
interrupt if the load exceeds a certain value. This decreases 
the OS cost (smaller number of interrupt) and the driver 
cost (smaller number of I/O operations on the card). The 
obtained results show that the number of packets per 
interrupt transferred grows about linearly with the network 
load. For instance, the 3Com NIC reaches an average value 
of 49.61 frames served per interrupt (corresponding to 
2999 interrupt/sec) when receiving 148K frames per 
second. This means that the relative overhead of low-level 
components (interrupt handling, NIC driver) on packet 
processing is higher for low packet rates and becomes 
progressively less significant for growing packet rates. 

 According to our tests, the cost per packet of the NIC 
driver (at the maximum rate of 148809 packets per second) 
when used in conjunction with WinPcap, with no other 
protocols active on the machine, is 2260 clock cycles with 
the Intel 85527 adapter and 1497 clock cycles with the 
3Com 3C996 adapter. 

Finally, there is an additional cost that cannot be 
quantified. Packets are transferred from the NIC card to the 
main memory through a bus-mastering transfer, which 
does not consume CPU clocks. However, the bus (which is 
a resource anyway) is busy during the transfer. For high 
loads this can be a non-negligible cost even if this process 
does not consume (apparently) any CPU clocks, because 
the bus is unavailable and it can delay CPU requests. 

4.3. Capture driver 

This Section analyses the cost of all components of the 
capture driver, i.e., the cost of the packet path from the 
NIC device driver (and OS) to the user-level application. 

4.3.1. Filtering process 
The filtering process deserves particular attention, 

because it is the only component that handles all incoming 
packets. Obviously, its cost depends not only on the 
efficiency of the filtering engine, but also on the 
complexity of the filter, i.e., on the number of checks that 
are to be done on each packet. Figure 4 shows the cost of 
three filters (in order of increasing complexity): a simple 
one that accepts only IP packets (it requires the execution 
of 3 pseudo-instructions of the NPF virtual processor), one 
that checks the packet’s TCP port against 5 different 
values (21 pseudo-instructions), and a more complex one 
that checks the packet against 10 IP addresses and 10 TCP 
ports  (50 pseudo-instructions).  
                                                           

1 Since this cost depends solely on the NIC and the system bus 
architecture, it has no relationship with clock cycles. However, we use 
this measurement unit for coherence with the rest of the paper.  

Packets are generated so that all the filtering code must 
be executed before the filter returns. As expected, the 
number of clock cycles grows linearly with the number of 
instructions, as shown in Figure 4. Typical filters require a 
few hundreds clock cycles. 
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Figure 4. Filters with different complexity. 

4.3.2. Memory copies 
As explained in Section 3, every packet is copied twice 

in the main memory before reaching the user (Figure 1): 
the first copy transfers the packet from the NIC buffer to 
the kernel buffer (Figure 2), the second one transfers it in 
the user-application buffer. Figure 5 shows the cost of the 
two copies, in CPU cycles per byte, on the machine under 
test. 

According to the NDIS specification, the first copy is 
performed by the NdisTransferData() function. The 
cost of this function is particularly high for two reasons. 
1. Some additional overhead is required before the 

copying process. According to the DDK documentation 
[7] a driver must use this function since the whole 
packet could not be available when the NIC driver 
leaves the control to the packet driver. Thus, this fun-
ction first checks whether the whole packet has been 
transferred in memory by the NIC; if not, it waits until 
the transfer is complete. 

2. The function operates on data that is not in the CPU 
cache. The packet to be copied has just been transferred 
from the NIC on-board memory to the main memory 
by means of a bus-mastering transfer (see Section 3.1). 
Previous points explain the cost of the first copy as 

shown in Figure 5: some constant processing is due 
independently to the amount of data that has to be 
transferred (this explain higher costs per bytes in case of 
small packets). For larger packets, these costs are spread 
over a larger mount of data, accounting for a smaller value 
for each byte transferred. 

The second copy uses a standard C library function 
(such as memcpy()). Its results are comparable with the 
ones obtained when copying mostly non-cached user level 
memory buffers, since most packets in the kernel buffer 
are not in the CPU cache. The cost per byte slightly 
increases because the larger the packet is, the higher the 



probability not to have it in cache (at least partially). The 
cost per byte increases also according to the kernel buffer 
size. For instance, if the amount of data in the kernel buffer 
is small, there is a higher probability that most of it is still 
in the CPU cache since its transfer from the NIC buffer 
during the first copy. 

Summarizing, the cost of the first copy varies between 
540 and 10500 clock cycles per packet, while the one of 
the second copy varies between 259 and 8550 clock cycles 
per packet. Actually, considering a 20 bytes header 
(containing a timestamp, the packet length and other 
information) that is added to each packet before storing it 
in the kernel buffer, the total cost of the second copy varies 
between 364 and 8664 clock cycles per packet. 
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Figure 5. Cost per byte of memory copies with 
different packet sizes. 

4.3.3. Interaction with the application 
All the interactions between the application and the 

packet driver are done via system calls. Windows provides 
the ReadFile(), WriteFile() and DeviceIo-
Control() system calls for I/O purposes. All these calls 
involve two context switches2: the first one transfers the 
execution from user level (the application) to kernel level 
(the driver), the second one returns the control back to user 
level. 

The context switch is well known as being a complex (it 
usually involves the generation of an interrupt and the 
initialization of some OS data structures) and therefore 
costly process. On the machine deployed for our 
measurements, a read()-like system call requires 33500 
clock cycles. Such a high cost makes copying a single 
packet per system call very ineffective; therefore the 
capture driver transfers blocks of packets each time an 
application invokes a system call. The number of packets 
transferred within a system call is determined by the 
occupation of the kernel buffer and grows proportionally 
with the CPU load. This, in turn, depends on the 
                                                           

2 The term context switch is used improperly here, since a transfer 
from user level to kernel level is actually a privilege level switch and does 
not necessarily implies a switch of the execution context. 

complexity of the user-level application (if an application 
requires a long time to process packets, it retrieves data 
from the kernel buffer at long time intervals and the kernel 
buffer is not adequately drained) and on the cost of the 
capture driver processing (this code runs at higher priority, 
therefore the kernel buffer is constantly filled up). 

Since the frequency of the read operations, and hence 
the number of packets retrieved per call, are highly 
variable, a general characterization of the operation cost in 
clock ticks per packet is not possible. On an overloaded 
machine (i.e. 100% CPU usage) receiving minimum-size 
frames, the capture driver transfers 256 Kbytes per system 
call3, corresponding to 3200 packets (including the 20 
bytes header added by the driver). In this situation the 
average cost of a context switch per packet is 
approximately 10 clock cycles, which is negligible given 
the cost introduced by other components. 

4.3.4. Other processing components 
Although the general feeling is that a capture driver 

spends most of its execution time in filtering and copying 
packets (and this explains why almost all the performance 
improvement work in literature focuses on one of them), 
our profiling revealed that other factors significantly affect 
the cost of capturing a packet. Among them, timestamp 
gathering is the most remarkable. 

The NPF driver obtains the timestamp for a packet 
through the KeQueryPerformanceCounter() 
Win32 function, which is the only kernel function that 
provides a time reference with microsecond precision. The 
cost of this function is very high because it has to interact 
with the system timer chip: approximately 1800 clock 
cycles4 on the machine used in this work. Paradoxically, 
this function requires multiple microseconds to return a 
result with an accuracy of a microsecond. However, this 
bias is almost constant, therefore this timestamp can be 
considered a valid measure of their arrival time. 

Additional costs include the interaction with NDIS and 
with the kernel (most of these interactions make use of 
callback functions, which are costly mechanisms), the 
management (mapping and unmapping) of memory buffers 
in use in the kernel, and the creation of the header that 
NPF adds to every packet. In summary, the costs 
associated to the execution of a packet driver, excluding 
filtering and copying amount to about 830 clock cycles. 

4.4. Total processing cost 

Figure 6 shows a summary of the results presented in 
current Section by plotting the relative cost of each 
operation relative to the processing of 64 byte packets at 

                                                           
3 This value is an upper bound chosen by the current WinPcap. 
4 The cost of this function has been measured on several single-

processor machines with equivalent results. 



148 Kfps. Results have been obtained with the 3Com 
3C996 Gigabit adapter and the 21 pseudo-instruction filter; 
the total cost to process a packet is 5680 clock cycles. 

 
Figure 6. Details of CPU clock cycles. 

As it is evident from Figure 6, the costs associated to 
the timestamp gathering and to the NIC driver are 
predominant in case of short packets. Since both costs 
depend mostly on the hardware, software optimizations are 
useless in their respect. Some minor optimizations are 
possible into NIC drivers, but they are usually made 
unfeasible by vendors because they do not publicly release 
the source code of their Win32 drivers. In any case, NIC 
driver optimizations are far less useful than a more 
intelligent chipset on the NIC card. 

Most notably, Figure 6 shows how most optimizations 
present in the literature, which focus on copying and 
filtering, aim at reducing a cost that accounts only for 15% 
of the total processing time, which is a very limited value 
indeed. 

Considering mostly short packets for analyzing 
performance is not a limitation of the current work. For 
instance, a large set of network analysis tools (notably, 
sniffers and network monitors) requires only the initial part 
of the packet, e.g. the first 98 bytes, so that the capture 
driver will discard all the remaining of the packet. This 
confirms our assumption that the profiling has to be done 
considering particularly short packets. 

4.5. Extending the validity of the results 

Although presented results refer to a specific tool 
(WinPcap) on a specific platform (Win32), their validity is 
more general. The costs related to WinPcap (namely the 
tap processing, first and second copies, filtering) are quite 
similar to the same costs on other architectures (for 
instance, NPF is quite similar to BPF). A similar rational is 
behind costs related to the operating system: NIC driver, 
timestamp gathering, and context switch. NIC driver costs 
may be reduced by a network card design that pushes in 
hardware some of the operation normally done in software, 
but this could be rather expensive. Hardware-based 
timestamp gathering in one of the most viable 

optimizations: the widely used DAG cards from Endace 
[17] provide such an example. For instance, Intel-based 
hardware does not have any simple way to get sub-
microseconds timestamps because of the lack of 
specialized chips in the x86 reference design and more 
precise timestamps must be gathered by interpolation (e.g. 
by means of the CPU hardware counters). In addiction, 
microsecond precision involves reading data from the 
8253/8254 chips (or equivalent), whose access is rather 
slow because they require IN/OUT operation through the 
system bus. 

For the last point, the context-switching impact is 
negligible and it does not change considerably among 
different operating systems (because, for instance, is one of 
the most carefully optimized parameter in modern 
operating systems). 

5. Optimization 

This Section presents and evaluates optimizations that 
have been implemented in the NPF with the purpose of 
limiting bottlenecks highlighted in the previous Section. 

5.1. Filtering process 

The filtering system used by WinPcap, the BSD Packet 
Filer (BPF), was proposed in 1993 in [2]. Several other 
filtering systems exist in literature [9] [10][11][12], but 
their speedup with respect to the BPF is negligible in the 
most common operating conditions. 
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Figure 7. Cost and speedup of three filters 

with different complexity using JIT compilation. 

Among the solutions to optimize BPF, dynamic code 
generation (i.e. the translation of packet filters into CPU-
native executable code) guarantees impressive 
performance improvements according to [11] and [10]. 
Therefore, a Just In Time (JIT) engine that translates BPF 
filters into 80x86 binary code, was implemented and 
incorporated in the NPF. As shown in Figure 7, the 
speedup brought by this optimization varies from 3.1 to 5. 
This corresponds to an 8% improvement of the total 
capturing cost (with a 21 pseudo-instruction filter). 



5.2. Memory copies 

As stated before, the cost of the first packet copy (from 
the NIC memory to the kernel buffer) is higher than the 
second. One reason is the additional processing incurred 
by the NdisTransferData(). However, we noticed 
that almost all the network controllers (hence the vast 
majority of network adapters) transfer a whole packet in 
memory before notifying the NIC driver, therefore the 
NPF driver receives it in a single contiguous buffer. In this 
case, it is possible to copy it with a standard C library 
function, with the result shown in Figure 8, otherwise the 
old method is used. The second copy is still a bit faster 
because of the higher probability that data is in the CPU 
cache and because the packets are moved in blocks rather 
than one at a time. However, the cost of the two copies is 
comparable and presents similar trends. 
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Figure 8. Cost per byte of memory copies with 

different packet sizes. 

Thanks to this optimization the average cost of the first 
copy decreases from 540 to 300 clock cycles per 64 byte 
packet on a fully loaded machine, while the cost of the 
second copy remains unchanged. This corresponds to a 4% 
improvement of the total capturing cost. 

5.3. Timestamp 

The usage of KeQueryPerformanceCounter()to 
obtain a timestamp with a microsecond  precision can be 
avoided thanks to the TimeStamp Counter (TSC) included 
in most 32-bit Intel processors. This high performance 
counter is incremented at every processor clock cycle, so 
its precision is equivalent to the CPU frequency. The x86 
assembler provides a very fast (one-cycle) instruction to 
obtain this timestamp, rdtsc. The cost of timestamp 
collection with rdtsc is 270 clock cycles, mainly due to 
two 64-bit divisions that are necessary to convert it into a 
standard struct timeval value. This optimization has 
a speedup of 6.6 corresponding to a 27 % improvement of 
the total capturing cost. However, this optimization is by 
default disabled on the standard distribution of NPF 

because of the strong dependence on the model (rdtsc 
works only on Intel CPUs or compatible ones, such as 
AMD ATHLON processors) and speed (some processors 
adjust their frequency according to external parameters, 
like the battery level) of the processor. However, this 
demonstrates that the addition of a simple hardware-based 
timestamp can improve the packet processing significantly. 

5.4. Optimization of the tap() function 

The use of standard C library memory copy routines 
instead of NdisTransferData() also enables a 
simpler tap() function. The process of transferring a 
packet with NdisTransferData() requires the 
allocation of a structure that will contain the packet during 
the transfer and the provision of a callback function that 
will be invoked when the copy is finished. Avoiding these 
steps when NdisTransferData() is not used 
significantly impacts performance. The simplification of 
some points of the tap() processing reduces its cost from 
830 to 560 clock cycles — a 5% improvement of the total 
capturing cost. 

5.5. Total processing cost with the optimizations 

Figure 9 illustrates the cost for the kernel-level 
processing of a 64 byte packet in the same conditions of 
Figure 6 but with the optimizations presented in this 
Section. The cost of the optimized processing is 3164 
clock cycles, i.e., slightly more than half of the cost 
without optimizations. 

 
Figure 9. Details of CPU clock cycles. 

It must be noted that 49 % of the CPU time is absorbed 
by the NIC driver and by the kernel interrupt processing. 
In fact, the cost of these two components is not affected by 
the optimizations. The speedup of the other components 
due to the optimizations is approximately 2.6. 

5.6. Possible hardware speedups 

Figure 9 shows that most of the costs are due to factors 
that are outside the packet capture components. Endace 



[17], a New-Zealand-based company, provides a set of 
optimized cards for packet capture. Their card does not 
have sophisticated hardware optimization, but they fix the 
problems where they are, i.e. they limit the overheads of 
the operating system. Basically, these cards generate a 
timestamp (in hardware) for each packet received, and they 
transfer the packet in the system memory, being clever 
enough to manage the buffering mostly in hardware. 
Applications (in user space) can read the data without any 
other intermediate layers because operating system 
structures (such as most of the work done by a NIC driver) 
and the OS-native protocol stack are bypassed completely. 

 Although we do not have any experimental data (these 
cards are available only on Linux, while our measurement 
infrastructure works only on Win32), we can see that their 
packet-processing overhead is limited to the filtering, plus 
some additional overhead that can be seen comparable 
with the tap processing (buffer management cannot be 
done totally in hardware and some interaction with the 
kernel-space is needed). In this case, the total processing 
cost can be estimated as about 670 clock ticks, which is a 
speedup of 8.4 compared to the original system, and 4.7 
compared to an optimized all-software system. 

Such a limited hardware support can guarantee a new 
life for software-based packet capture and analysis 
applications. 

6. Conclusions 

This paper presents the results of the profiling and 
optimization of the software chain at the basis of network 
analysis and monitoring tools, e.g. a sniffer. The work 
identifies the components involved in packet capture and 
measures their cost in terms of CPU clock cycles required 
for their execution. A valuable result of this study is the 
quantitative conclusion that, contrary to common belief, 
filtering and buffering are not the most critical factors in 
determining packet capture performance. Optimization of 
these two components, that received most attention so far, 
is shown to bring little improvement to the overall packet 
capture cost, particularly in case of short packets (or when 
small snapshot length are needed). The profiling done on a 
real system shows that the most important bottlenecks lie 
in hidden places, like device driver, interaction between 
application and OS, interaction between OS and hardware.  

Thus, since packet capture encompasses various 
interacting elements, optimizing it requires keeping in 
mind the overall process rather than concentrating on a 
single component. This paper shows that some limited 
optimizations in the right place are far more noticeable 
than architectural changes, such as some involving filtering 
and buffering that were proposed in literature. 
Furthermore, this work shows that the performance of 
software-based traffic analysis can be pushed further 
despite the fact that the employed technologies are 

considered substantially mature, for example by means of 
some limited hardware support like timestamp gathering, 
or bypassing operating system overheads. 

All the details and measurements made in the context of 
this work are available on the WinPcap home page [8], 
along with documentation, source code and examples. 
Most of the presented optimizations are currently 
implemented in version 3.0 of WinPcap. 
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