
Optimizing Packet Capture on Symmetric Multiprocessing Machines

Gianluca Varenni, Mario Baldi, Loris Degioanni, Fulvio Risso
Dipartimento di Automatica e Informatica

Politecnico di Torino
Corso Duca degli Abruzzi, 24 – 10129 Torino, Italy

{gianluca.varenni, mario.baldi, loris.degioanni, fulvio.risso}@polito.it

Abstract

Traffic monitoring and analysis based on general
purpose systems with high speed interfaces, such as
Gigabit Ethernet and 10 Gigabit Ethernet, requires
carefully designed software in order to achieve the
needed performance. One approach to attain such a
performance relies on deploying multiple processors. This
work analyses some general issues in multiprocessor
systems that are particularly critical in the context of
packet capture and network monitoring applications.
More important, a new algorithm is proposed to
coordinate multiple producers concurrently accessing a
shared buffer, which is instrumental in packet capture on
symmetrical multiprocessor machines.

1. Introduction

Many of today’s applications and communication
systems rely on data networks. Consequently, seamless
operation and proper performance of the network have
come to affect everyone’s daily business and personal
life. This has led, in the last years, to a significant
increase in network capacity and reliability and the need
of tools to continuously monitor network behavior and
performance. Generally speaking, such tools snoop
packets being transferred through the network, possibly
store (part of) them for later analysis, and collect various
measurements and statistics.

Even though different solutions can be devised for
specific applications, in general the critical (on-line) path
of network monitoring and analysis includes the
following operations, usually executed in the order shown
below.
1. Filtering: each packet traveling on the network is

matched against a set of rules in order to determine
whether it is interesting for a particular application.
Since the amount of traffic traveling on a network
segment, especially in the network core, can be huge,
filtering out irrelevant traffic is an essential step to

reduce the demand in terms of storage and processing
power on the monitoring and analysis tool. Filtering
usually implies extracting relevant fields from each
packet and using their value to evaluate the rules.
Filtering is a special case of classification[10] that is
used by various networking functions to separate
packets that need to be processed differently.

2. Processing: while traffic monitoring and analysis
does not modify packets, a large number of counters
used to provide measurements and statistics might
have to be updated for each accepted packet1.

3. Storing: packets or relevant parts of packets are
stored in system memory or mass memory for later,
off-line processing or inspection by a network
manager. This operation is essential in packet
capturing tools.

Considering the continuous increase in network traffic,
performance is a key issue in network monitoring and
analysis tools. One approach in addressing such issues
relies on special-purpose hardware that assists in the
execution of the above operations. Another approach
focuses on optimizing the software implementations of
the above operations so that their execution on general-
purpose hardware can cope with the traffic at hand. The
former approach leads to hardware monitoring and
analysis tools, while the latter results in software tools.

The work presented in this paper was motivated by an
effort to improve the performance of WinPcap [1][9], a
public domain Windows library widely used world-wide
for the implementation of applications that require low
level access to network services. Monitoring and analysis
tools, like the companion Analyzer [4], WinDump [5],
and Ethereal [6], are examples of such applications. Even
though this paper focuses on monitoring and analysis
applications, the presented work is relevant also to a
plethora of other applications, such as network address
translation (NAT) engines, routers, firewalls, and

1 It is worthwhile noticing that the work presented in this paper is
relevant to many other network tools, such as network address
translation (NAT) engines and firewalls that are more demanding in
terms of per packet processing.

intrusion detection systems (IDS). In fact, WinPcap has
been used in the implementation of several such systems.

This work reports the challenges and the outcome of
the application to WinPcap of a basic and well-known
approach to performance improvement of software
systems: parallel execution. This work has been
particularly challenging since traffic monitoring and
analysis is inherently non-parallel because packets travel
serially through the network links and are received in
sequence by a single Network Interface Card (NIC). In
Section 2 the above-presented critical operations are
analyzed in more detail from both the logical and physical
points of view. This analysis aims at finding the
processing steps whose parallel execution can positively
affect performance. Section 3 focuses on the most critical
— from the point of view of parallel execution — of such
steps: buffer management. A novel buffer management
algorithm that allows multiple producers and multiple
consumers to concurrently access a common buffer is
presented and compared to well-known solutions enabling
different degrees of parallel execution. The proposed
buffer management algorithm is currently implemented in
an internal version of WinPcap. Conclusions are drawn in
Section 4.

2. A Closer Look at Traffic Monitoring and
Analysis

This section gives a closer look at the operations
involved in traffic monitoring and analysis to provide a
model of the corresponding logical and physical system
architecture. Since this work was done in an effort to
improve the performance of WinPcap, the presented
system architecture is closely related to the one of
Windows NT-based operating systems.

2.1. Logical System Architecture

Figure 1 shows the logical system components
involved in capturing network traffic. Packets received by
a NIC are stored in a portion of the system memory
(RAM) usually known as the NIC driver buffer. This
operation is usually carried out directly by the NIC by
means of a bus-mastering data transfer and without
intervention of the system CPU.

RAM DPC

NIC driver buffer kernel buffer

NIC = network interface card
DPC = deferred procedure call

Capture
Driver RAM

User level
applicationsNIC

Figure 1. Logical architecture of a monitoring

and analysis system.

The NIC signals the availability of new data in the NIC
driver buffer through an interrupt request. In
Windows NT-based systems interrupt requests are usually
served by triggering the execution of a very short
handling routine that does little more than queuing a
procedure pointer for later execution. This mechanism is
called deferred procedure call (DPC)[3][11]. The DPC is
dequeued by the kernel when all the pending interrupt
requests have been served, and it is responsible for calling
the user-specific code (e.g. the capture driver) through an
entry function that is usually called tap()[2]. The
capture driver runs at kernel-level as well and it starts the
custom processing. For instance, packets are compared
against a set of rules that select the packet interesting for
the application (filtering). If they match the rules, they are
copied to another system memory location (called kernel
or ring buffer), from where they are delivered to the
application that can perform a further processing on them.

The motivation underlying this work is improving the
performance in executing the code of the capture driver
by means of the parallel execution capability of a
symmetric multi-processing (SMP) machine. As shown in
Figure 2, multiple processors could concurrently execute
the same instance of the capture driver tap(), each one
handling a different packet stored in the NIC driver
buffer. In Windows NT-based SMP systems each CPU
holds its own DPC queue, and, when it is not busy serving
an interrupt request, picks a procedure from the head of
its DPC queue and executes it. The possibility to execute
concurrently two tap() functions brings a considerable
advantage in case the amount of processing in it is high.
The parallelization can be highly efficient in case the two
execution paths do not have any dependencies among
them (e.g. state variables).

RAM

DPC

NIC driver buffer kernel buffer

Capture
Driver

RAM
User level

applicationsNIC

DPC Capture
Driver

CPU #1

CPU #2
Figure 2. Logical architecture of a monitoring
and analysis system with multiple processors.

After the tap()processing, both CPU must copy their
data into the kernel buffer. To complete the advantages
brought by the SMP processing, also the copies of the
capture drivers toward the kernel buffer should be made
more efficient. In this approach the kernel buffer is a
shared resource concurrently accessed by multiple
processes writing (capture drivers) and reading (user level
applications) data. This is the well-known producer and
consumer problem; a widely known algorithm addressing
this problem is presented in Section 3.1, while some
variations to increase the degree of parallelism among the

producers (and the overall speed), are presented in the
remainder of Section 3. These algorithms are able to
further improving the parallelization of the whole packet
processing path.

2.2. Physical System Architecture

Being RAM shared among processors through the so-
called memory bus, as shown in Figure 3, the various
CPUs cannot concurrently access the NIC driver buffer
and kernel buffer while executing the DPCs and the
capture driver tap() function, as shown in Figure 2. As
a consequence, the idea of improving performance by
having multiple CPUs concurrently accessing the kernel
buffer seems unfeasible since all memory accesses are
serialized going through the BUS.

CPU
RAM

CPU

Memory bus
Figure 3. Logical access to memory.

Nevertheless, a closer look at computer architecture
shows that physical transfer of data to and from memory
involves a third element, the cache memory, which is
local to each CPU, as shown in Figure 4. Consequently,
even if the memory is not strictly accessible in parallel, in
most cases the various CPUs actually work concurrently
on a copy in their cache memory.

Cache

CPU
RAM

CPU

Memory bus

Cache

Figure 4. Physical access to memory.

Particularly, when the tap() executed on a CPU
begins accessing a packet stored into RAM (in the NIC
driver buffer), the packet is usually transferred
immediately into the CPU cache memory. When the CPU
then writes the packet to memory (in the kernel buffer), it
is actually copied inside the CPU’s cache and only later
the memory bus controller, without intervention of the
CPU, will actually write the data to RAM. If the
processing into the capture driver lasts enough, the caches
can transfer their content to the RAM (serially) while the
CPU are performing some new tasks (e.g. processing the
next packets).

3. Algorithms

The producer-consumer problem is one of the best-
known examples of synchronization among several
execution paths sharing a common resource. In this
problem, two (or more) entities communicate by means of
a shared memory: one entity – the producer – writes data
in the shared memory, while the other one – the consumer
– retrieves data from the shared memory.

3.1. Single producer solution

Several solutions to this problem were proposed in the
literature. One of the best known approaches [8] uses a
ring buffer as shared memory, two pointers, P and C in
Figure 5, to ensure proper handling of the information
stored in the memory, and two semaphores to synchronize
the access to it. For the sake of brevity in the following
presentation of solutions to the producer-consumer
problem, the ring buffer is considered organized in fixed
size storage units, hereafter called cells. The presented
algorithms can be easily generalized to variable size
storage units.

C

P
Figure 5. Ring buffer used for the single

producer problem.

As shown by the pseudo-code in Figure 6, the producer
waits on a semaphore free counting the number of free
cells in the ring buffer. If the buffer is full the producer is
blocked by the wait operation. Otherwise, the producer
fills the cell pointed by P, modifies P to point to the next
cell, and signals semaphore occupied counting the
number of full cells in the buffer.

The consumer waits on semaphore occupied and is
blocked if the buffer is empty. When the producer signals
the semaphore occupied, the consumer wakes up,
retrieves data from the cell pointed by C, updates C to
point to the next cell, and signals semaphore free,
possibly awaking the sleeping producer.

Semaphore free avoids overrunning the buffer since
the producer can write some data only if there is at least
one free cell in the ring buffer. Semaphore occupied
avoids underrunning the ring buffer since the consumer
can read only if the ring buffer contains at least one full
cell. However, this algorithm does not work in case of

multiple producers.
free=BUF_SIZE;
occupied=0;

producer()
{
wait(free);
buffer[P]=produce(...);
P=(P+1)%BUF_SIZE;
signal(occupied);
return SUCCESS;

}

consumer()
{
wait(occupied);
consume(stream[C]);
C= (C+1) % BUF_SIZE;
signal(free);
return SUCCESS;

}
Figure 6. Single producer-consumer problem.

3.2. Pointer-based solutions with multiple
producers

The most common, and straightforward, approach to
the multiple producers problem consists in allowing only
one producer at a time to write on the ring buffer. This
can be achieved by including the buffer access code
within a critical section, as shown in Figure 72.

free=BUF_SIZE;
occupied=0;
producers_semaphore=1;

producer()
{
wait(producers_semaphore);
wait(free);
buffer[P]=produce(...);
P=(P+1)%BUF_SIZE;
signal(occupied);
signal(producers_semaphore);
return SUCCESS;

}

consumer()
{
wait(occupied);
consume(stream[C]);
C= (C+1) % BUF_SIZE;
signal(free);
return SUCCESS;

}
Figure 7. Ring buffer write access within critical

section.

The critical section is created through the use of a one-
slot semaphore (producers_semaphore in Figure 7).
This solution, although very simple, does not exploit
parallel processing since only one producer can access the

2 The pseudo-code examples presented in this paper assume a single
consumer because the application on which the work focused — i.e.,
traffic monitoring and analysis — does not require multiple consumers.
However, the extension to multiple consumers is straightforward.

ring buffer at each given time. While this might be
acceptable in general, it might significantly affect
performance in packet capture where moving data from
the NIC driver buffer to the kernel buffer represents a
non-negligible fraction of the overall task performed by
the system, as explained in Section 2.

The above algorithm can be extended to allow multiple
producers to concurrently access a ring buffer, by
substituting the pointer P with the following two pointers
(see Figure 9):
• PC, (Consumer-head Pointer), identifying the last

readable cell in the buffer
• PP (Producer-head Pointer), identifying the first

writable cell in the buffer.
These two pointers and pointer C must always be

consistent. A first step to maintain consistency is to make
sure that every increment to these pointers be done
atomically. This is usually obtained through functions
provided by the operating system (such as
InterLockedXXX() functions on Windows NT-based
systems) or CPU-native atomic instructions.

free=BUF_SIZE;
producers_semaphore=1;

producer()
{
wait(free);
wait(producers_semaphore);
myP= Pp;
Pp= (Pp+1) % BUF_SIZE;
signal(producers_semaphore);
buffer[myP]= produce(...);

// ...other code
return SUCCESS;

}

Figure 8. Atomic increment of PP.

The pointer PP identifies the cell in which a new
producer should deposit its data. In order to guarantee that
concurrent producers do not access the same cell, PP must
be atomically incremented by a producer, before it
actually starts writing into the pointed cell, as exemplified
in Figure 8.

CPP

PC

π2

π1

Figure 9. Pointers for the multiple producers

case.

This solution is effective in synchronizing producers’
access to the ring buffer so that cells are filled in an
orderly fashion, without leaving empty cells between

filled ones and without risk of overwriting. However, it is
critical in the update of pointer PC. Since the order in
which producers finish their task is not known in advance,
once done with its own cell a producer needs to know the
status of the neighboring cells in order to decide whether
it can update pointer PC. For example, in the scenario
depicted in Figure 9 the producer π2 completes its task
before producer π1, which, having started before, had
obtained control of the preceding cell. Hence, upon
completion, producer π2 is not supposed to update PC,
while producer π1 should update PC to point to the cell
filled out by π2, rather than its own.

Various algorithms and data structures for handling the
update of PC were proposed in [7] (one of them is
included in the WinPcap 3.0 [1] implementation for SMP
machines). The next Section presents a simpler and more
effective approach that bypasses the criticality in the
update of Pc by avoiding deploying such pointer.

3.3. The tagged cell algorithm

The algorithm presented in this Section deploys a per-
cell tag that indicates its state. The consumer checks a
cell’s tag to determine whether the cell can be read. A
pointer P contains the index of the first cell in which a
producer can store its data.

The per-cell tag identifies one of the following states
for the cell:
• Free — the cell is empty and can be written by

producers; the consumer is not supposed to read it.
• Booked — the cell is booked by a producer before

starting writing data to it. The cell cannot be read by
the consumer or used by another producer.

• Full — the cell contains some valid data, thus can be
safely read by a consumer. Producers cannot use this
cell.

• Padding — a producer, after booking the cell, has
failed to fill it. Other producers should not consider
this cell for writing, while consumers should process
this cell by tagging it free without reading its content.

The Finite State Machine (FSM) depicted in Figure 10
shows all the possible cell state transitions.

Free Booked

Full

Padding P3

P2C1

C2

P1

Figure 10. Per-cell tag FSM.

Initially, every cell is marked Free. A producer
wishing to write data books a Free cell by marking it as

Booked (transition P1 in Figure 10). When the producer is
done with a booked cell, it marks the cell as Full
(transition P2 in Figure 10). If the producer for any reason
fails to complete its writing operation by storing valid
data in the cell it booked, then it marks the cell as
Padding (transition P3 in Figure 10). In case the buffer is
full, the consumer can either return failure (as it is in
Figure 11) or block until a cell becomes Free. However,
the former is the preferred solution: if no buffers are
available, the received packet is simply lost.

A consumer can consider a cell only if it is in a Full or
Padding state3; moreover, only a cell marked as Full
contains valid data, hence a Padding cell must be skipped.
When a consumer has processed a cell (whether a Full or
Padding one), it marks the cell Free (transitions C1 and
C2 in Figure 10, respectively).

Figure 11 shows the pseudo-code of the tagged cell
algorithm: pointers P and C are used to identify the next
cell to be considered for writing and for reading,
respectively.

The pointer P and the cell tag, shared among the
various producers, are atomically modified inside a
critical section enclosed between
lock(global_lock) and
unlock(global_lock).

The tagged cell algorithm has two major advantages
over each of the pointer based solutions presented in
Section 3.2.
• The producer uses two small critical sections, whose

sole purpose is to have a global pointer atomically
modified, while the producer code that actually
writes data into the ring buffer — i.e., the function
produce(…) in the presented pseudo-code
example — is not in a critical section; therefore it can
be concurrently executed by multiple producers.

• The coordination of producers and consumers is
straightforward to understand and implement: it is a
matter of atomic handling of the cell tags and
pointers PP and C.

On the other side, this solution presents two
shortcomings, whose impact on the systems performance
can however be considered negligible, especially when
the algorithm is applied in the context of packet capture:
• when a producer does not successfully complete its

writing procedure (in other words, when the function
produce(…) in Figure 11 fails), the cell previously
booked by the unsuccessful producer cannot be used
by another producer until it has been processed by a
consumer4. In the context of packet capture, the
possibility of a producer being unable to successfully

3 In case of a Booked cell, the consumer can either return a failure or
block until the cell changes its state to Full or Padding; this is an
implementation choice.
4 The cell state Padding is used to handle this situation.

complete its task, while not null, is fairly low. Thus,
this shortcoming can be neglected, i.e., the number of
cells possibly being unused is negligible compared to
the ring buffer size, and even more to the number of
cells successfully filled up;

• if one or more Booked cells precede a Full cell, the
latter cannot be accessed by a consumer until the
respective producers are done with the Booked cells.
Such a scenario is depicted in Figure 12: a consumer
accessing the buffer is given a buffer empty
notification even though the buffer contains a cell
ready to be read.
producer()
{
lock(global_lock);
if (buffer[P].flag == FREE)
{
buffer[P].flag = BOOKED; /* P1 transition */
myP = P;
P=(P+1)%BUF_SIZE;

}
else
myP= -1;

unlock(global_lock);

if (myP == -1)
return FAILURE_BUFFER_FULL;

buffer[myP] = produce(..., retcode);

lock(global_lock);

if (ret_code == OK)
buffer[myP].flag = FULL; /* P2 transition */

else
buffer[myP].flag = PADDING; /* P3 transition */

unlock(global_lock);
return retcode;

}

consumer()
{
lock(global_lock);
myflag = buffer[C].flag;
unlock(global_unlock);

if (myflag == FREE || myflag == BOOKED)
return FAILURE_EMPTY;

if (myflag == FULL)
consume(stream[C]);

lock(global_lock);
stream[C].flag = FREE; /* C1 or C2 transition */
unlock(global_lock);

C=(C+1)%BUF_SIZE;

return SUCCESS;
}

Figure 11. Tag cell algorithm.

In the context of packet capture, the last shortcoming is
not an important issue because packet should be delivered
to the application in the same order they are received by
the NIC; solving that issue will arise the problem of the
out of order packets. However, in case this issue matters,
we should take into account that the difference in the
execution time of the producers is usually small.

Consequently, a situation like the one depicted in Figure
12 has a limited time span, which implies that (i) there is
a low possibility that a consumer checks pointer C in such
a short span, and (ii) a blocked consumer is waken up
shortly. Moreover, in packet monitoring and analysis
applications the speed at which the kernel buffer is
emptied is not critical due to the large buffer size, needed
to absorb large network bursts.

P

C
π1

Full cell

Booked cell

Figure 12. Blocked consumer.

3.4. General issues in multiprocessor systems

This section discusses some issues that in general exist
in SMP systems, but are particularly relevant to traffic
monitoring and analysis applications.

1) Preserving data order
In the realm of packet capture the problem of

preserving the arrival order of the packets is a
fundamental issue, particularly when dealing with
multiple concurrent producers. Packets travel on a link
serially and are received by all the NICs in the same
order; thus it is important that packets are delivered to the
application in the same order they have been received by
the NIC. However, as shown in Figure 1 and Figure 2,
received packets are stored in the NIC driver buffer, while
packets being processed are retrieved from the kernel
buffer. Consequently, it is essential that the order of
packets is maintained in the transfer from the NIC driver
buffer to the kernel buffer. This issue will be analyzed in
detail for the tagged cell algorithm. However, the same
considerations can be applied to the multiple producers
algorithms presented in Section 3.

π1

π2

t

Figure 13. The booking procedure.

In the tagged cell algorithm the event of marking a cell
Booked determines the order of cell allocation. Figure 13
shows a time diagram of the execution of two producers;
the shaded area represents the execution of the booking
procedure that takes place shortly after the producer
starts. In the context of packet capture, a producer is

executed as a tap() (triggered by the DPC) handling a
specific received packet. Since DPCs are queued in the
order the corresponding packets are received, it could be
concluded that the cells of the kernel buffer are filled up
in the order producers begin their execution. Instead, this
is not the case of Windows NT-based SMP systems for
the following reasons.
• Consider a scenario in which the DPC intended to

handle a received packet is appended to the DPC
queue of processor Π1, while the DPC of a
subsequently received packet is appended to the
queue of processor Π2. If Π2 is available for the
execution of its DPC before Π1, Π2 will execute the
producer code earlier and mark as Booked a cell
preceding the one marked by Π1. Consequently, the
two packets will not be stored in the ring buffer (i.e.,
the kernel buffer) in the order they were received.

• Even if DPCs are executed in the same order their
corresponding packets were received (as it is the
case, for example, if the processors are idle waiting to
process received packets), the execution can be
interrupted (“preempted”) for servicing an interrupt
request. As shown in Figure 14, if the execution of a
producer π1 on processor Π1 is preempted before it
marks a cell as Booked, a producer π2 started on
processor Π2 after π1, could execute the marking
instruction before π1. Consequently, the first received
packet handled by π1 will be stored in the kernel
buffer after the subsequently received packet handled
by π2.

π1

π2

t
preemption

Figure 14. Booking procedure with preemption.

It is opinion of the authors that a non zero possibility
of not preserving packet order can be accepted as a trade-
off in obtaining high performance over SMP machines
running a general purpose operating system. In any case,
some of the aspects of the problem depend on the
operating system, which is not under our control.

2) Synchronization time
The time spent by concurrent processes waiting for

each other includes the contributions listed below. In the
context of high-speed packet capture these contributions
might make synchronization time a serious issue.
• Synchronization primitives are usually slow,

particularly on multiprocessor machines. Informal
test results have shown that with Windows NT-based
operating systems a synchronization primitive is up
to 10 times slower on a multiprocessor machine than

on a single processor one. This applies to both kernel
(e.g., spinlocks) and hardware (e.g.,
InterlockedXXX() function) synchronization
primitives.

• The worst-case time spent waiting to enter a critical
section is o[(n-1)·ts], where n is the maximum
number of processes trying to enter the same critical
section (e.g., the number of producers in the problem
addressed in this work), and ts is the total amount of
time spent in the critical section. Figure 15 shows an
example of such worst case situation: producer π3 is
ready for the execution of the critical section slightly
after π1, but it has to wait almost twice the critical
section execution time (t’A – tA) before being allowed
into it. Even though the critical section of the tagged
cell algorithms encompasses a small number of
instructions —hence featuring a short execution
time— when the number of processors in the system
is high and the captured traffic is intense, the time
spent while waiting to modify a cell tag can be non
negligible.

t

π3
π2
π1

tA tB tC t’A t’B t’C
Figure 15. Time spent waiting to enter a critical

section.

4. Conclusions

The work presented here was performed in the context
of development of WinPcap [1], a public domain library
for low-level access to network functionalities on
Windows systems. Being traffic monitoring and analysis
the main applications of this library (see [4][5][6]), high
performance is essential to ensure proper operation with
high speed interfaces, such as Gigabit Ethernet. Parallel
execution of packet capture on SMP systems seems to be
a possible, promising approach to high performance.
However, packet capture is an inherently sequential task
and the code implementing it must be carefully designed
in order to take significant advantage of multiple
processors without any packet reordering. Since several
algorithms do not scale well with the number of
processors, having multiple CPUs does not necessarily
imply better performance.

The presented work has two main contributions. First,
a novel algorithm for the solution of the producer-
consumer problem when multiple producers concurrently
access the shared buffer is presented. Second, some
general issues in multiprocessor systems are analyzed in
the context of packet capture applications.

.
Independently of its application in the field of high

performance packet capture, the presented solution for the
multiple concurrent producers problem constitutes a
general, relevant theoretical contribution. Further work
will include its performance evaluation also in the context
of Non-Uniform Memory Architecture (NUMA)
workstations, which offer a great degree of scalability
because their performance are not limited by the shared
bus and RAM memory.

References

[1] Computer Networks Group (NetGroup) at Politecnico di
Torino, “WinPcap Web Site”, available at
http://winpcap.polito.it, April 2003.

[2] S. McCanne, and V. Jacobson, “The BPF Packet Filter: A
New Architecture for User-level Packet Capture”,
Proceedings of 1993 Winter USENIX Technical
Conference (San Diego, CA, Jan. 1993), USENIX.

[3] D. Solomon, and M. Russinovich, Inside Windows 2000,
3rd ed., 2000, Microsoft Press.

[4] Computer Networks Group (NetGroup) at Politecnico di
Torino, “Analyzer Web Site”, available at
http://analyzer.polito.it, March 2003.

[5] Computer Networks Group (NetGroup) at Politecnico di
Torino, "WinDump Web Site", available at
http://windump.polito.it, March 2003.

[6] “Ethereal Web Site”, available at http://www.ethereal.com,
March 2003.

[7] G. Varenni, “Approaches for the n-producers/1-consumer
problem”, Technical Report DAUIN200302, Dipartimento
di Automatica e Informatica Politecnico di Torino, Italy,
Feb. 2003.

[8] A. Silberschatz, P. G. Gavin, and G. Gagne, Operating
System Concepts, 6th ed., 2001, John Wiley & Sons.

[9] F. Risso, and L. Degioanni, “An Architecture for High
Performance Network Analysis”, Proceedings of the 6th
IEEE Symposium on Computers and Communications
(ISCC 2001), Hammamet, Tunisia, July 2001.

[10] P. Gupta and N. McKeown, “Algorithms for Packet
Classification”, IEEE Network Special Issue, March/April
2001, vol. 15, no. 2, pp. 24-32.

[11] Microsoft Windows Driver Development Kits (DDKs),
available at http://www.microsoft.com/ddk/.

	Introduction
	A Closer Look at Traffic Monitoring and Analysis
	Logical System Architecture
	Physical System Architecture

	Algorithms
	Single producer solution
	Pointer-based solutions with multiple producers
	The tagged cell algorithm
	General issues in multiprocessor systems
	Preserving data order
	Synchronization time

	Conclusions
	References

