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Abstract  

Traffic monitoring and analysis based on general 
purpose systems with high speed interfaces, such as 
Gigabit Ethernet and 10 Gigabit Ethernet, requires 
carefully designed software in order to achieve the 
needed performance. One approach to attain such a 
performance relies on deploying multiple processors. This 
work analyses some general issues in multiprocessor 
systems that are particularly critical in the context of 
packet capture and network monitoring applications. 
More important, a new algorithm is proposed to 
coordinate multiple producers concurrently accessing a 
shared buffer, which is instrumental in packet capture on 
symmetrical multiprocessor machines. 

1. Introduction 

Many of today’s applications and communication 
systems rely on data networks. Consequently, seamless 
operation and proper performance of the network have 
come to affect everyone’s daily business and personal 
life. This has led, in the last years, to a significant 
increase in network capacity and reliability and the need 
of tools to continuously monitor network behavior and 
performance. Generally speaking, such tools snoop 
packets being transferred through the network, possibly 
store (part of) them for later analysis, and collect various 
measurements and statistics. 

Even though different solutions can be devised for 
specific applications, in general the critical (on-line) path 
of network monitoring and analysis includes the 
following operations, usually executed in the order shown 
below. 
1. Filtering: each packet traveling on the network is 

matched against a set of rules in order to determine 
whether it is interesting for a particular application. 
Since the amount of traffic traveling on a network 
segment, especially in the network core, can be huge, 
filtering out irrelevant traffic is an essential step to 

reduce the demand in terms of storage and processing 
power on the monitoring and analysis tool. Filtering 
usually implies extracting relevant fields from each 
packet and using their value to evaluate the rules. 
Filtering is a special case of classification[10] that is 
used by various networking functions to separate 
packets that need to be processed differently. 

2. Processing: while traffic monitoring and analysis 
does not modify packets, a large number of counters 
used to provide measurements and statistics might 
have to be updated for each accepted packet1. 

3. Storing: packets or relevant parts of packets are 
stored in system memory or mass memory for later, 
off-line processing or inspection by a network 
manager. This operation is essential in packet 
capturing tools. 

Considering the continuous increase in network traffic, 
performance is a key issue in network monitoring and 
analysis tools. One approach in addressing such issues 
relies on special-purpose hardware that assists in the 
execution of the above operations. Another approach 
focuses on optimizing the software implementations of 
the above operations so that their execution on general-
purpose hardware can cope with the traffic at hand. The 
former approach leads to hardware monitoring and 
analysis tools, while the latter results in software tools. 

The work presented in this paper was motivated by an 
effort to improve the performance of WinPcap [1][9], a 
public domain Windows library widely used world-wide 
for the implementation of applications that require low 
level access to network services. Monitoring and analysis 
tools, like the companion Analyzer [4], WinDump [5], 
and Ethereal [6], are examples of such applications. Even 
though this paper focuses on monitoring and analysis 
applications, the presented work is relevant also to a 
plethora of other applications, such as network address 
translation (NAT) engines, routers, firewalls, and 

                                                           
1 It is worthwhile noticing that the work presented in this paper is 
relevant to many other network tools, such as network address 
translation (NAT) engines and firewalls that are more demanding in 
terms of per packet processing.  



intrusion detection systems (IDS). In fact, WinPcap has 
been used in the implementation of several such systems. 

This work reports the challenges and the outcome of 
the application to WinPcap of a basic and well-known 
approach to performance improvement of software 
systems: parallel execution. This work has been 
particularly challenging since traffic monitoring and 
analysis is inherently non-parallel because packets travel 
serially through the network links and are received in 
sequence by a single Network Interface Card (NIC). In 
Section 2 the above-presented critical operations are 
analyzed in more detail from both the logical and physical 
points of view. This analysis aims at finding the 
processing steps whose parallel execution can positively 
affect performance. Section 3 focuses on the most critical 
— from the point of view of parallel execution — of such 
steps: buffer management. A novel buffer management 
algorithm that allows multiple producers and multiple 
consumers to concurrently access a common buffer is 
presented and compared to well-known solutions enabling 
different degrees of parallel execution. The proposed 
buffer management algorithm is currently implemented in 
an internal version of WinPcap. Conclusions are drawn in 
Section 4. 

2. A Closer Look at Traffic Monitoring and 
Analysis 

This section gives a closer look at the operations 
involved in traffic monitoring and analysis to provide a 
model of the corresponding logical and physical system 
architecture. Since this work was done in an effort to 
improve the performance of WinPcap, the presented 
system architecture is closely related to the one of 
Windows NT-based operating systems.  

2.1. Logical System Architecture 

Figure 1 shows the logical system components 
involved in capturing network traffic. Packets received by 
a NIC are stored in a portion of the system memory 
(RAM) usually known as the NIC driver buffer. This 
operation is usually carried out directly by the NIC by 
means of a bus-mastering data transfer and without 
intervention of the system CPU. 

RAM DPC

NIC driver buffer kernel buffer

NIC = network interface card
DPC = deferred procedure call

Capture 
Driver RAM

User level 
applicationsNIC

 
Figure 1. Logical architecture of a monitoring 

and analysis system. 

The NIC signals the availability of new data in the NIC 
driver buffer through an interrupt request. In 
Windows NT-based systems interrupt requests are usually 
served by triggering the execution of a very short 
handling routine that does little more than queuing a 
procedure pointer for later execution. This mechanism is 
called deferred procedure call (DPC)[3][11]. The DPC is 
dequeued by the kernel when all the pending interrupt 
requests have been served, and it is responsible for calling 
the user-specific code (e.g. the capture driver) through an 
entry function that is usually called tap()[2]. The 
capture driver runs at kernel-level as well and it starts the 
custom processing. For instance, packets are compared 
against a set of rules that select the packet interesting for 
the application (filtering). If they match the rules, they are 
copied to another system memory location (called kernel 
or ring buffer), from where they are delivered to the 
application that can perform a further processing on them. 

The motivation underlying this work is improving the 
performance in executing the code of the capture driver 
by means of the parallel execution capability of a 
symmetric multi-processing (SMP) machine. As shown in 
Figure 2, multiple processors could concurrently execute 
the same instance of the capture driver tap(), each one 
handling a different packet stored in the NIC driver 
buffer. In Windows NT-based SMP systems each CPU 
holds its own DPC queue, and, when it is not busy serving 
an interrupt request, picks a procedure from the head of 
its DPC queue and executes it. The possibility to execute 
concurrently two tap() functions brings a considerable 
advantage in case the amount of processing in it is high. 
The parallelization can be highly efficient in case the two 
execution paths do not have any dependencies among 
them (e.g. state variables). 
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Figure 2. Logical architecture of a monitoring 
and analysis system with multiple processors. 

After the tap()processing, both CPU must copy their 
data into the kernel buffer. To complete the advantages 
brought by the SMP processing, also the copies of the 
capture drivers toward the kernel buffer should be made 
more efficient. In this approach the kernel buffer is a 
shared resource concurrently accessed by multiple 
processes writing (capture drivers) and reading (user level 
applications) data. This is the well-known producer and 
consumer problem; a widely known algorithm addressing 
this problem is presented in Section 3.1, while some 
variations to increase the degree of parallelism among the 



producers (and the overall speed), are presented in the 
remainder of Section 3. These algorithms are able to 
further improving the parallelization of the whole packet 
processing path. 

2.2. Physical System Architecture 

Being RAM shared among processors through the so-
called memory bus, as shown in Figure 3, the various 
CPUs cannot concurrently access the NIC driver buffer 
and kernel buffer while executing the DPCs and the 
capture driver tap() function, as shown in Figure 2. As 
a consequence, the idea of improving performance by 
having multiple CPUs concurrently accessing the kernel 
buffer seems unfeasible since all memory accesses are 
serialized going through the BUS. 
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Figure 3. Logical access to memory. 

Nevertheless, a closer look at computer architecture 
shows that physical transfer of data to and from memory 
involves a third element, the cache memory, which is 
local to each CPU, as shown in Figure 4. Consequently, 
even if the memory is not strictly accessible in parallel, in 
most cases the various CPUs actually work concurrently 
on a copy in their cache memory. 
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Figure 4. Physical access to memory. 

Particularly, when the tap() executed on a CPU 
begins accessing a packet stored into RAM (in the NIC 
driver buffer), the packet is usually transferred 
immediately into the CPU cache memory. When the CPU 
then writes the packet to memory (in the kernel buffer), it 
is actually copied inside the CPU’s cache and only later 
the memory bus controller, without intervention of the 
CPU, will actually write the data to RAM. If the 
processing into the capture driver lasts enough, the caches 
can transfer their content to the RAM (serially) while the 
CPU are performing some new tasks (e.g. processing the 
next packets). 

3. Algorithms 

The producer-consumer problem is one of the best-
known examples of synchronization among several 
execution paths sharing a common resource. In this 
problem, two (or more) entities communicate by means of 
a shared memory: one entity – the producer – writes data 
in the shared memory, while the other one – the consumer 
– retrieves data from the shared memory. 

3.1. Single producer solution 

Several solutions to this problem were proposed in the 
literature. One of the best known approaches [8] uses a 
ring buffer as shared memory, two pointers, P and C in 
Figure 5, to ensure proper handling of the information 
stored in the memory, and two semaphores to synchronize 
the access to it. For the sake of brevity in the following 
presentation of solutions to the producer-consumer 
problem, the ring buffer is considered organized in fixed 
size storage units, hereafter called cells. The presented 
algorithms can be easily generalized to variable size 
storage units. 

C

P  
Figure 5. Ring buffer used for the single 

producer problem. 

As shown by the pseudo-code in Figure 6, the producer 
waits on a semaphore free counting the number of free 
cells in the ring buffer. If the buffer is full the producer is 
blocked by the wait operation. Otherwise, the producer 
fills the cell pointed by P, modifies P to point to the next 
cell, and signals semaphore occupied counting the 
number of full cells in the buffer.  

The consumer waits on semaphore occupied and is 
blocked if the buffer is empty. When the producer signals 
the semaphore occupied, the consumer wakes up, 
retrieves data from the cell pointed by C, updates C to 
point to the next cell, and signals semaphore free, 
possibly awaking the sleeping producer.  

Semaphore free avoids overrunning the buffer since 
the producer can write some data only if there is at least 
one free cell in the ring buffer. Semaphore occupied 
avoids underrunning the ring buffer since the consumer 
can read only if the ring buffer contains at least one full 
cell. However, this algorithm does not work in case of 



multiple producers. 
free=BUF_SIZE;
occupied=0;

producer()
{
wait(free);
buffer[P]=produce(...);
P=(P+1)%BUF_SIZE;
signal(occupied);
return SUCCESS;

}

consumer()
{
wait(occupied);
consume(stream[C]);
C= (C+1) % BUF_SIZE;
signal(free);
return SUCCESS;

}  
Figure 6. Single producer-consumer problem. 

3.2. Pointer-based solutions with multiple 
producers  

The most common, and straightforward, approach to 
the multiple producers problem consists in allowing only 
one producer at a time to write on the ring buffer. This 
can be achieved by including the buffer access code 
within a critical section, as shown in Figure 72. 

 
free=BUF_SIZE;
occupied=0;
producers_semaphore=1;

producer()
{
wait(producers_semaphore);
wait(free);
buffer[P]=produce(...);
P=(P+1)%BUF_SIZE;
signal(occupied);
signal(producers_semaphore);
return SUCCESS;

}

consumer()
{
wait(occupied);
consume(stream[C]);
C= (C+1) % BUF_SIZE;
signal(free);
return SUCCESS;

}  
Figure 7. Ring buffer write access within critical 

section. 

The critical section is created through the use of a one-
slot semaphore (producers_semaphore in Figure 7). 
This solution, although very simple, does not exploit 
parallel processing since only one producer can access the 

                                                           
2 The pseudo-code examples presented in this paper assume a single 
consumer because the application on which the work focused — i.e., 
traffic monitoring and analysis — does not require multiple consumers. 
However, the extension to multiple consumers is straightforward. 

ring buffer at each given time. While this might be 
acceptable in general, it might significantly affect 
performance in packet capture where moving data from 
the NIC driver buffer to the kernel buffer represents a 
non-negligible fraction of the overall task performed by 
the system, as explained in Section 2. 

The above algorithm can be extended to allow multiple 
producers to concurrently access a ring buffer, by 
substituting the pointer P with the following two pointers 
(see Figure 9): 
• PC, (Consumer-head Pointer), identifying the last 

readable cell in the buffer 
• PP (Producer-head Pointer), identifying the first 

writable cell in the buffer. 
These two pointers and pointer C must always be 

consistent. A first step to maintain consistency is to make 
sure that every increment to these pointers be done 
atomically. This is usually obtained through functions 
provided by the operating system (such as 
InterLockedXXX() functions on Windows NT-based 
systems) or CPU-native atomic instructions.  

free=BUF_SIZE;
producers_semaphore=1;

producer()
{
wait(free);
wait(producers_semaphore);
myP= Pp;
Pp= (Pp+1) % BUF_SIZE;
signal(producers_semaphore);
buffer[myP]= produce(...);

// ...other code
return SUCCESS;

}
 

Figure 8. Atomic increment of PP. 

The pointer PP identifies the cell in which a new 
producer should deposit its data. In order to guarantee that 
concurrent producers do not access the same cell, PP must 
be atomically incremented by a producer, before it 
actually starts writing into the pointed cell, as exemplified 
in Figure 8. 
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Figure 9. Pointers for the multiple producers 

case. 

This solution is effective in synchronizing producers’ 
access to the ring buffer so that cells are filled in an 
orderly fashion, without leaving empty cells between 



filled ones and without risk of overwriting. However, it is 
critical in the update of pointer PC. Since the order in 
which producers finish their task is not known in advance, 
once done with its own cell a producer needs to know the 
status of the neighboring cells in order to decide whether 
it can update pointer PC. For example, in the scenario 
depicted in Figure 9 the producer π2 completes its task 
before producer π1, which, having started before, had 
obtained control of the preceding cell. Hence, upon 
completion, producer π2 is not supposed to update PC, 
while producer π1 should update PC to point to the cell 
filled out by π2, rather than its own. 

Various algorithms and data structures for handling the 
update of PC were proposed in [7] (one of them is 
included in the WinPcap 3.0 [1] implementation for SMP 
machines). The next Section presents a simpler and more 
effective approach that bypasses the criticality in the 
update of Pc by avoiding deploying such pointer.  

3.3. The tagged cell algorithm 

The algorithm presented in this Section deploys a per-
cell tag that indicates its state. The consumer checks a 
cell’s tag to determine whether the cell can be read. A 
pointer P contains the index of the first cell in which a 
producer can store its data.  

The per-cell tag identifies one of the following states 
for the cell: 
• Free — the cell is empty and can be written by 

producers; the consumer is not supposed to read it. 
• Booked — the cell is booked by a producer before 

starting writing data to it. The cell cannot be read by 
the consumer or used by another producer. 

• Full — the cell contains some valid data, thus can be 
safely read by a consumer. Producers cannot use this 
cell. 

• Padding — a producer, after booking the cell, has 
failed to fill it. Other producers should not consider 
this cell for writing, while consumers should process 
this cell by tagging it free without reading its content. 

The Finite State Machine (FSM) depicted in Figure 10 
shows all the possible cell state transitions. 

 

Free Booked

Full

Padding P3

P2C1

C2

P1

 
Figure 10. Per-cell tag FSM. 

Initially, every cell is marked Free. A producer 
wishing to write data books a Free cell by marking it as 

Booked (transition P1 in Figure 10). When the producer is 
done with a booked cell, it marks the cell as Full 
(transition P2 in Figure 10). If the producer for any reason 
fails to complete its writing operation by storing valid 
data in the cell it booked, then it marks the cell as 
Padding (transition P3 in Figure 10). In case the buffer is 
full, the consumer can either return failure (as it is in 
Figure 11) or block until a cell becomes Free. However, 
the former is the preferred solution: if no buffers are 
available, the received packet is simply lost. 

A consumer can consider a cell only if it is in a Full or 
Padding state3; moreover, only a cell marked as Full 
contains valid data, hence a Padding cell must be skipped. 
When a consumer has processed a cell (whether a Full or 
Padding one), it marks the cell Free (transitions C1 and 
C2 in Figure 10, respectively).  

Figure 11 shows the pseudo-code of the tagged cell 
algorithm: pointers P and C are used to identify the next 
cell to be considered for writing and for reading, 
respectively. 

The pointer P and the cell tag, shared among the 
various producers, are atomically modified inside a 
critical section enclosed between 
lock(global_lock) and 
unlock(global_lock).  

The tagged cell algorithm has two major advantages 
over each of the pointer based solutions presented in 
Section 3.2. 
• The producer uses two small critical sections, whose 

sole purpose is to have a global pointer atomically 
modified, while the producer code that actually 
writes data into the ring buffer — i.e., the function 
produce(…) in the presented pseudo-code 
example — is not in a critical section; therefore it can 
be concurrently executed by multiple producers. 

• The coordination of producers and consumers is 
straightforward to understand and implement: it is a 
matter of atomic handling of the cell tags and 
pointers PP and C. 

On the other side, this solution presents two 
shortcomings, whose impact on the systems performance 
can however be considered negligible, especially when 
the algorithm is applied in the context of packet capture: 
• when a producer does not successfully complete its 

writing procedure (in other words, when the function 
produce(…) in Figure 11 fails), the cell previously 
booked by the unsuccessful producer cannot be used 
by another producer until it has been processed by a 
consumer4. In the context of packet capture, the 
possibility of a producer being unable to successfully 

                                                           
3 In case of a Booked cell, the consumer can either return a failure or 
block until the cell changes its state to Full or Padding; this is an 
implementation choice. 
4 The cell state Padding is used to handle this situation. 



complete its task, while not null, is fairly low. Thus, 
this shortcoming can be neglected, i.e., the number of 
cells possibly being unused is negligible compared to 
the ring buffer size, and even more to the number of 
cells successfully filled up; 

• if one or more Booked cells precede a Full cell, the 
latter cannot be accessed by a consumer until the 
respective producers are done with the Booked cells. 
Such a scenario is depicted in Figure 12: a consumer 
accessing the buffer is given a buffer empty 
notification even though the buffer contains a cell 
ready to be read. 
producer()
{
lock(global_lock);
if (buffer[P].flag == FREE)
{
buffer[P].flag = BOOKED; /* P1 transition */
myP = P;
P=(P+1)%BUF_SIZE;

}
else
myP= -1;

unlock(global_lock);

if (myP == -1)
return FAILURE_BUFFER_FULL;

buffer[myP] = produce(..., retcode);

lock(global_lock);

if (ret_code == OK)
buffer[myP].flag = FULL; /* P2 transition */

else
buffer[myP].flag = PADDING; /* P3 transition */

unlock(global_lock);
return retcode;

}

consumer()
{
lock(global_lock);
myflag = buffer[C].flag;
unlock(global_unlock);

if (myflag == FREE || myflag == BOOKED)
return FAILURE_EMPTY;

if (myflag == FULL)
consume(stream[C]);

lock(global_lock);
stream[C].flag = FREE; /* C1 or C2 transition */
unlock(global_lock);

C=(C+1)%BUF_SIZE;

return SUCCESS;
}  

Figure 11. Tag cell algorithm. 

In the context of packet capture, the last shortcoming is 
not an important issue because packet should be delivered 
to the application in the same order they are received by 
the NIC; solving that issue will arise the problem of the 
out of order packets. However, in case this issue matters, 
we should take into account that the difference in the 
execution time of the producers is usually small. 

Consequently, a situation like the one depicted in Figure 
12 has a limited time span, which implies that (i) there is 
a low possibility that a consumer checks pointer C in such 
a short span, and (ii) a blocked consumer is waken up 
shortly. Moreover, in packet monitoring and analysis 
applications the speed at which the kernel buffer is 
emptied is not critical due to the large buffer size, needed 
to absorb large network bursts. 
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Figure 12. Blocked consumer. 

3.4. General issues in multiprocessor systems 

This section discusses some issues that in general exist 
in SMP systems, but are particularly relevant to traffic 
monitoring and analysis applications. 

1) Preserving data order 
In the realm of packet capture the problem of 

preserving the arrival order of the packets is a 
fundamental issue, particularly when dealing with 
multiple concurrent producers. Packets travel on a link 
serially and are received by all the NICs in the same 
order; thus it is important that packets are delivered to the 
application in the same order they have been received by 
the NIC. However, as shown in Figure 1 and Figure 2, 
received packets are stored in the NIC driver buffer, while 
packets being processed are retrieved from the kernel 
buffer. Consequently, it is essential that the order of 
packets is maintained in the transfer from the NIC driver 
buffer to the kernel buffer. This issue will be analyzed in 
detail for the tagged cell algorithm. However, the same 
considerations can be applied to the multiple producers 
algorithms presented in Section 3.  
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Figure 13. The booking procedure. 

In the tagged cell algorithm the event of marking a cell 
Booked determines the order of cell allocation. Figure 13 
shows a time diagram of the execution of two producers; 
the shaded area represents the execution of the booking 
procedure that takes place shortly after the producer 
starts. In the context of packet capture, a producer is 



executed as a tap() (triggered by the DPC) handling a 
specific received packet. Since DPCs are queued in the 
order the corresponding packets are received, it could be 
concluded that the cells of the kernel buffer are filled up 
in the order producers begin their execution. Instead, this 
is not the case of Windows NT-based SMP systems for 
the following reasons. 
• Consider a scenario in which the DPC intended to 

handle a received packet is appended to the DPC 
queue of processor Π1, while the DPC of a 
subsequently received packet is appended to the 
queue of processor Π2. If Π2 is available for the 
execution of its DPC before Π1, Π2 will execute the 
producer code earlier and mark as Booked a cell 
preceding the one marked by Π1. Consequently, the 
two packets will not be stored in the ring buffer (i.e., 
the kernel buffer) in the order they were received. 

• Even if DPCs are executed in the same order their 
corresponding packets were received (as it is the 
case, for example, if the processors are idle waiting to 
process received packets), the execution can be 
interrupted (“preempted”) for servicing an interrupt 
request. As shown in Figure 14, if the execution of a 
producer π1 on processor Π1 is preempted before it 
marks a cell as Booked, a producer π2 started on 
processor Π2 after π1, could execute the marking 
instruction before π1. Consequently, the first received 
packet handled by π1 will be stored in the kernel 
buffer after the subsequently received packet handled 
by π2. 

π1 

π2 

t
preemption

 
Figure 14. Booking procedure with preemption. 

It is opinion of the authors that a non zero possibility 
of not preserving packet order can be accepted as a trade-
off in obtaining high performance over SMP machines 
running a general purpose operating system. In any case, 
some of the aspects of the problem depend on the 
operating system, which is not under our control. 

2) Synchronization time 
The time spent by concurrent processes waiting for 

each other includes the contributions listed below. In the 
context of high-speed packet capture these contributions 
might make synchronization time a serious issue. 
• Synchronization primitives are usually slow, 

particularly on multiprocessor machines. Informal 
test results have shown that with Windows NT-based 
operating systems a synchronization primitive is up 
to 10 times slower on a multiprocessor machine than 

on a single processor one. This applies to both kernel 
(e.g., spinlocks) and hardware (e.g., 
InterlockedXXX() function) synchronization 
primitives. 

• The worst-case time spent waiting to enter a critical 
section is o[(n-1)·ts], where n is the maximum 
number of processes trying to enter the same critical 
section (e.g., the number of producers in the problem 
addressed in this work), and ts is the total amount of 
time spent in the critical section. Figure 15 shows an 
example of such worst case situation: producer π3 is 
ready for the execution of the critical section slightly 
after π1, but it has to wait almost twice the critical 
section execution time (t’A – tA) before being allowed 
into it. Even though the critical section of the tagged 
cell algorithms encompasses a small number of 
instructions —hence featuring a short execution 
time— when the number of processors in the system 
is high and the captured traffic is intense, the time 
spent while waiting to modify a cell tag can be non 
negligible. 
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Figure 15. Time spent waiting to enter a critical 

section. 

4. Conclusions 

The work presented here was performed in the context 
of development of WinPcap [1], a public domain library 
for low-level access to network functionalities on 
Windows systems. Being traffic monitoring and analysis 
the main applications of this library (see [4][5][6]), high 
performance is essential to ensure proper operation with 
high speed interfaces, such as Gigabit Ethernet. Parallel 
execution of packet capture on SMP systems seems to be 
a possible, promising approach to high performance. 
However, packet capture is an inherently sequential task 
and the code implementing it must be carefully designed 
in order to take significant advantage of multiple 
processors without any packet reordering. Since several 
algorithms do not scale well with the number of 
processors, having multiple CPUs does not necessarily 
imply better performance. 

The presented work has two main contributions. First, 
a novel algorithm for the solution of the producer-
consumer problem when multiple producers concurrently 
access the shared buffer is presented. Second, some 
general issues in multiprocessor systems are analyzed in 
the context of packet capture applications.  



. 
Independently of its application in the field of high 

performance packet capture, the presented solution for the 
multiple concurrent producers problem constitutes a 
general, relevant theoretical contribution. Further work 
will include its performance evaluation also in the context 
of Non-Uniform Memory Architecture (NUMA) 
workstations, which offer a great degree of scalability 
because their performance are not limited by the shared 
bus and RAM memory. 
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