Application of symbolic FSM Markovian analysis to

protocol verification

M.Baldi, A.Macii, E.Macii and M.Poncino

Abstract: Computer-aided design tools for Markovian analysis and verification of digital circuits
have gained much interest in the last few years. This is mainly due to the advent of effective data
structures, e.g., binary and algebraic decision diagrams, for Boolean and pseudo-Boolean function
representation and manipulation.The authors illustrate how those tools can be successfully
exploited to analyse the behavior and verify the correctness of a communication protocol.They
first consider the case of single protocol entities running in isolation, and present a simple
application example (i.e. the sender entity of the alternating bit protocol). Then, informally
illustrate how the analysis approach can be extended to the general case of multi-layer protocol

stacks and complete communication systems.

1 Introduction

‘Different methods have been proposed and used so far to
analyse the behavior and verify the correctness of commu-
nication protocols. The most common is simulation.
Although this approach is extremely valuable for under-
standing what a model does in selected cases, it is inade-
quate to guarantee that a given property (or behavior) holds
for all possible cases. To perform such “exhaustive”
analysis and verification, other solutions are required. In
view of this probabilistic techniques have attracted a lot of
interest in recent times, thanks to the promising results
they have provided in other fields of electrical engineering
and computer science.

A communication protocol usually represents a system
whose behavior can be specified through a finite state
machine (FSM). It is known that the probabilistic (or
Markovian) behavior of a FSM can be investigated by
regarding its transition structure as a Markov chain [1, 2].
As a consequence, studying the Markov chain is related to
performing reachability analysis on a FSM. (Reachability
analysis, also called state space traversal, consists of
determining the set of states of the FSM that can be
reached from a given initial state after any sequence of
“vectors of any length is applied to the inputs of the FSM.)
Finite state machines are often used to model digital
systems in the context of logic synthesis and formal
hardware verification. Therefore, a well-established tech-
nology for analyzing large FSMs (i.e., those corresponding
to complex circuits) is currently available. More specifi-
cally, exact and approximate procedures to quickly, yet
effectively, carry out the state space traversal, as well as the
Markovian analysis of a given FSM, do exist. AH these
procedures rely on the capability of compactly representing
Boolean and pseudo-Boolean (i.e., real-valued) functions

© IEE, 1999

IEE Proceedings online no. 19990645

DOI: 10.1049/ip-cdt: 19990645

Paper first received 8th June 1998 and in revised form 21st May 1999

The authors are with the Politecnico di Torino, Dipartamento di
Automatica e Informatica, Torino, Ttaly 10129

IEE Proc.-Computers & Digital Techniques, Vol. 146, No. 5, September 1999

!
i
i
|
I
)

provided by symbolic data structures such as binary
decision diagrams (BDDs) [3] and their extensions (e.g.,
multi-terminal binary decision diagrams (MTBDDs) [4]
and algebraic decision diagrams (ADDs) [5]).

In this paper we illustrate how symbolic FSM Marko-
vian analysis can be exploited to perform quantitative
investigation and verification of properties of communica-
tion protocols. We first consider the simple case of isolated
protocol entities. Then, we informally discuss how the
modularity of the approach makes it applicable to entire,
multi-layer protocol stacks and complete communication
systems.

Protocol analysis and verification based on Markovian
investigation of the finite state structure that describes its
behavior has been in use for some time. However, a serious
constraint on the applicability of this procedure was posed
by its high computational complexity. In practice, only
structures with at most a few tens of states could be
analyzed. This major limitation is removed by the use of
symbolic calculations. Much larger systems (billions of
states and beyond) can now be handled; therefore, the
Markovian analysis and verification paradigm becomes
applicable in practical and realistic situations, as already
demonstrated by applications such as probabilistic model
checking and property verification [6, 7].

2 Background

2.1 Boolean functions and BDDs
An n-input, m-output Boolean function F is a mapping
from an n-dimensional Boolean space to an m-dimensional
Boolean space, F: B" \— B™, where B={0,1}. B" is called
the domain of F, and B™ is called the co-domain (or image)
of £ If m > 1, then F is a multiple-output function. If m =1,
then F is a single output function, and we denote it with f.
The support of a Boolean function is the set of variables
the function depends on.
Given an n-input, single-output Boolean function,

f(x1,...,x,), the positive and négative cofactors of f,
with respect to variable x;, are defined as:
ﬁr, = 0, X Lxg g, X,
221

and

j;; =f(x;, %1, 0%, ...,%,)

Among the various data structures available for the repre-
sentation of Boolean functions (e.g., truth tables, Karnaugh
maps, algebraic expressions), the binary decision diagrams
(BDDs) [3] have emerged as the most appropriate for
applications such as automatic synthesis, verification,
simulation, and testing of complex VLSI systems.

A BDD is a directed acyclic graph (DAG); the root node
of the DAG identifies the function, f, represented by the
BDD, the internal nodes are labeled with the variables
belonging to the true support of f (i.e., the set of variables
on which f actually depends), and the terminal nodes are
labeled with the values 0 and 1.

The BDDs we consider are reduced, that is, they do not
contain duplicated and redundant nodes. In addition, they
are ordered, that is, all the variables appear in the same
order along all paths from the root to the terminal nodes.

2.2 Pseudo-boolean functions and ADDs

An n-inputpseudo-Boolean function, fB”" — §, is a
mapping from an n-dimensional Boolean space to a finite
set of elements S. Different data-structures have been
proposed for storing and manipulating functions of this
type. In this work, we use the algebraic decision diagrams
(ADDs) [5].

The most important operators for efficient manipulation
of the ADDs are: ITE, APPLY, and ABSTRACT. ITE takes
three arguments: f; an ADD restricted to have only 0 or 1 as
terminal values, and g and 4, generic ADDs. It is defined
by:

ITE(f.g. W) =f-g+/ -h

APPLY takes one operator, op (e.g., +, —, X), and two
operand ADDs as arguments; it applies op to all corre-
sponding elements of the two operands and returns the
resulting ADD.

ABSTRACT reduces the dimensionality of its argument
function through existential arithmetic abstraction of some
variables. Let u be the support of a pseudo-Boolean func-
tion f(x), and let x and y be two sub-sets of # such that
xUy=u. The arithmetic existential abstraction of x from
f(u) with respect to the arithmetic sum is defined as:

\Hfw =) fw

This definition tells that the ABSTRACT operator
computes the arithmetic sum of all the cofactors associated
with the minterms of the x-variables and thus originates a
function that depends only on the y variables.

2.3 Finite state machines (FSMs)

A Mealy-type finite state machine (FSM), M, is defined as
the 6-tuple:

M=X,Z28,5 A A)

where X is the input alphabet, Z is the output alphabet, S is
the finite set of states, s® € S is the unique reset state,
A:X x §i+— S is the next-state function, and A:Xx S1— Z is
the output function. An FSM, M, can also be represented
by a state transition graph (STG). Every vertex of such a
graph corresponds to a state of M, and is labeled with an
element of S, while every edge corresponds to a transition,
and is labeled with an element of X x Z. States that can be

222

reached, under some input sequences, from the reset state
are called reachable states.

In order to write functions A and A as (possibly multiple-
output) Boolean functions, the symbols of the input and
output alphabets must be encoded using distinct sets of
binary variables. In addition, the symbolic states in S are
assigned unique binary codes and they are represented
using an appropriate set of binary variables.

3 Symbolic FSM analysis techniques

3.1 FSM traversal

The FSM traversal problem consists of computing the set
of reachable states of a given FSM starting from a set of
initial states. Traditional approaches, based on the explicit
representation of the STG, are limited because the entire
graph can not be stored unless it is for a small machine. A
new approach based on breadth first search (BFS) and
called symbolic FSM traversal, has been originally
proposed by Coudert et al. [8], and refined in [9-12].

The key ideas of the method are the use of the char-
acteristic functions to represent sets of states reached at any
point during the BFS traversal, and the use of BDDs to
represent these characteristic functions. The complexity of
FSM traversal is not directly related to the number of states
of the machine, and FSMs with billions of states have been
traversed successfully using this method. In fact, the
explicit STG is no longer needed: the algorithm directly
manipulates the next state function of the machine to be
traversed.

In general, the technique is very efficient because states
are manipulated implicitly using their characteristic func-
tions and not one by one as previous algorithms did.

A simplified description of the BFS traversal procedure
is presented in Fig. 1. The key operation is image compu-
tation. Given a multiple-output Boolean function,
F:B"1— B™, and a subset ¢ of the domain, the image of ¢
under F is defined by:

IMAGE(F, ¢) = {F(x)|x € ¢}

Initially from® = S° is the characteristic function of the set
of initial states of the machine. The characteristic function
reached represents the set of states that have been reached
so far from the initial states. Some states in fo' may have
been reached previously, so a set difference operation with
reached is needed in order to compute new’, the states
reached in this iteration for the first time. The set is used to
check the termination condition and is accumulated in
reached. The procedure is guaranteed to terminate in a
finite number of steps, because the number of states is
finite and reached is non-decreasing.

procedure BFS_TRAVERSAL (A, %)
from® =reached = S°
for (=1;;i+ +){
to' =IMAGE (A, from'~!)
new' = to'-reached
if (new’ =0) then
return (reached)
reached = reached + new*
from' = new'

}

Fig. 1. Symbolic FSM traversal algorithm

IEE Proc.-Computers & Digital Techniques, Vol. 146, No. 5, September 1999

3.2 FSM markovian analysis

The Markovian behavior of a finite state machine can be
studied by regarding its transition structure as a Markov
chain. It is sufficient to label each out-going edge of each
state with the probability for the FSM to make that
particular transition to obtain a discrete-parameter
Markov chain. On the other hand, studying the behavior
of the Markov chain, that is, computing the state occupa-
tion probabilities, is related to performing the reachability
analysis of a FSM.

Given the next state (A) and output (A) functions of the
FSM representing the sequential circuit, it is possible to
compute the value of the steady-state occupation prob-
ability of each state s € S, i.e., the probability that the
FSM, when in its steady-state, is in state s € S. For mid-
sized circuits the calculation can be carried out in an exact
fashion using the ADD-based procedures of [13]; for large
sequential networks, the approximate techniques of [14]
must be employed. In both cases, complex primary input
probability distributions can be specified in order to have
more detailed hardware modeling options.

4 Application to protocol verification

Computer-aided design tools for symbolic manipulation
and Markovian analysis of finite state machines usually
assume the availability of the structural description of a
sequential circuit whose functional behavior perfectly
matches that of the FSM under analysis. (Notice that the
correspondence between circuit implementation and FSM
is not unique, that is, a given FSM can be realized by
different circuits.) To exploit the capabilities of such tools
in the context of protocol verification, a preliminary step of
quick (or low-efforf) synthesis is required to generate a
gate-level implementation (called in the following the
protocol equivalent circuit) of the FSM describing the
protocol.

In this section we first consider the case of isolated
protocol layers. We illustrate how Markovian verification
‘can be performed on these kind of entities, and we show
how the technique can be used in practice in the case of a
simple example, namely, the Alternating Bit Protocol.
Then, we outline extensions of the method to multi-layer
protocol stacks and complete communications systems.

4.1 Analysis and verification of a single protocol
entity
Let us assume that a gate-level description of the equiva-
lent circuit for the protocol entity we intend to verify is
available. Such description is usually obtained through
common high-level and logic-level synthesis tools. The
primary input and primary output signals of the circuit
model the interface of the protocol entity under analysis
with either the neighboring protocol layers, as shown in
Fig. 2, the user, or the physical communication channel.
Starting from the gate-level description of the circuit, we
initially extract the corresponding state transition graph
(STG), and then we identify its topology by STG structural
analysis. To perform such analysis, we first calculate the set
of reachable states using the symbolic traversal algorithms
described in Section 3.1. Typical values of the input
transition probabilities are then determined by functional
simulation of a system that contains the protocol entity
under verification and that realistically models the envir-
onment in which the protocol entity will run in practice.
Alternatively, the designer sets those probability values

IEE Proc.-Computers & Digital Techniques, Vol. 146, No. 5, September 1999

protocol layer i+1

circuit implementation Pl PO
of protocol layer i

=4

Pl PO

protocol layer i+1

Fig. 2 Signal interface of the circuit modeling a protocol layer

according to his/her knowledge about the communication
system. Such probabilities are finally propagated through
the STG to obtain the state-transition probabilities, which
are stored as labels on the edges of the state transition
graph.

The STG has now become a weighted directed graph;
consequently, as discussed in Section 3.2, it can be
regarded as a discrete-parameter Markov chain, on which
the terminal strongly connected components are deter-
mined by applying the procedure presented by Matsunaga
et al. in [15]; such procedure calculates the transitive
closure of a transition relation. Finally, the steady-state
occupation probabilities for the Markov chain are
computed using the symbolic calculation methods briefly
summarized in Section 3.2.

At this point, the property we are interested in analyzing
on the protocol entity is specified in terms of some of the
reachable states of the Markov chain on which it should
hold, and the probability for a protocol entity to be in such
states is computed through symbolic operations. In par-
ticular, if (s) represents the set of states identifying the
property to be checked and p(s) indicates the steady-state
occupation probability of the states in such set, the prob-
ability that the property holds is computed symbolically
through arithmetic existential abstraction as:

Prob(v) = \}(p(s) - v(s))

This result provides us with an answer about the prob-
ability that the protocol entity under verification satisfies
the desired property.

4.2 An example: the alternating bit protocol

To better understand how Markovian analysis and verifica-
tion works, we apply it to a simple example, namely, the
alternating bit protocol (ABP) [16], which is a reliable
layer-2 (data-link) protocol, according to the ISO/OSI
reference model [17].

The protocol works as follows. A sender entity commu-
nicates with a corresponding receiver entity exploiting the
services of the layer-1 entity, as shown in Fig. 3. The
sender and the receiver reliably exchange data in the form
of bits having alternatively the values 0 and 1. The receiver
acknowledges the reception of each bit; the acknowledg-
ment specifies the value of the received bit. The sender
waits for the acknowledgment of the last sent bit; if, when
an acknowledgment is received, the specified value differs
from the expected one, the last bit is retransmitted.

223

sender receiver

lower layer

Fig. 3 A4BP: system architecture

In the following, we consider the sender entity of the
ABP protocol. Using the ISO/OSI terminology, the inter-
faces through which the layers interact are called service
access points (SAPs); in our case, they are given the names
of u (SAP towards the user) and n (SAP towards the
underlying layer). The service primitives through the u
interface are u.Send.Request initiated by the user and
u.Send.Confirm originated by the sender entity upon recep-
tion of the acknowledgment related to the bit sent to fulfill
the last request.

For the sake of simplicity, we assume that the layer-1
protocol entity provides services for sending bits and two
kinds of acknowledgments, i.e., it builds, transfers, and
interprets the protocol data units used to carry data bits and
acknowledgments, thus relieving the ABP from this task.
Then, the service primitives through the » interface are
n.DT_0.Request and n.DT_].Request initiated by the
sender entity, and n.Ack_0.Indication and n.Ack_1.Indica-
tion initiated by the receiver entity. n.Ack_0.Indication
means that the receiver has received a bit with value 0
and it has issued a n.Ack_0.Request that has caused an
acknowledgment message to be sent on the network.

The complete behavior of the ABP sender entity is best
summarized by the finite state machine of Fig. 4.

The sender is initially in its reset state, Ready_0. In this
state, the only event to which the protocol reacts is
w.Send Request from the user: The FSM goes to state
WFAck_0 and it issues a n.DT _0.Request as related
action. In state WFAck_0, n.Ack_O.Indication tells that
the last bit (that had value 0) has been successfully
received. Thus, the sender notifies the user by issuing a
‘u.Send.Confirm and moves to the state Ready_I1. When the
sender is in this state, the next u.Send.Request causes the
sending on the network of a bit with value 1, and the FSM

n.Ack_0.Indication/

u.Send.Request/- n.DT_1.Request

n.Ack_1.Indication/
u.Send.Confirm

Ready 0
(00)

u.Send.Request/
n.DT_0.Request

u.Send.Request/
n.DT_1.Request

n.Ack_0.Indication/
u.Send,Confirm

n.Ack_1.indication/ u.Send.Request/-

n.DT_0,Request
Fig. 4 ABP: finite state machine of the sender entity

224

goes to state WFAck_1 issuing a n.DT_Il Request. From
here, the Ready_0 state is reached again upon reception of
a n.Ack_l.Indication meaning that the last bit (that had
value 1) has been successfully received.

Given the FSM specification of the sender entity, one
property we may be interested in checking is, for instance,
the probability of the sender to be in a state waiting for a
n.Ack_0.Indication. More specifically, we would like to
check how such probability evolves as the protocol’s
boundary conditions change.

We study the aforementioned property by applying
Markovian verification. Therefore, we first construct the
ABP sender equivalent circuit by synthesising its FSM
specification. The resulting circuit, obtained through the
SIS [18] logic synthesis tool, has the interface shown in
Fig. 5 (each /O signal represents one service primitive); it
consists of a total of 19 logic gates (the circuit has been
mapped onto a library containing NAND, NOR, and
inverter gates, each of which allows up to four inputs),
and its schematic is depicted in Fig. 6.

At this point, we can run the Markovian analysis tool on
the ABP sender equivalent circuit. We control the proto-
col’s boundary conditions by setting different transition
probabilities at the inputs of the circuit. In particular, we
tune the probability values to be assigned to the v.Send. Re-
quest primitive from the user and to the n.4Ack_0.Indication
primitive from the underlying layer.

The results of our analysis are shown in the diagram of
Fig. 7, where on the x axis we report the probability of the
u.Send. Request signal to be active, and on the y axis we
report the probability of the protocol to be in state
WFAck_0. Each curve in the diagram is drawn for a
different value of the probability of n.4Ack_0.Indication to
be issued by the lower protocol layer.

The diagram confirms that, for a fixed value of the
probability of u.Send Request, the probability of state
WFAck_0 decreases for increasing values of the probability
of n.Ack_0.Indication. When the latter is equal to 1 (the
corresponding curve coincides with the x axis), we have
the extreme situation of the protocol leaving immediately
state WEAck_0. On the other hand, when the probability of
n.Ack_0.Indication is equal to 0, no acknowledgment is
received, and the protocol is stuck in state WFAck_0.
Similarly, for a fixed value of the probability of n.Ack_0.In-

L !

Send.Confirm

Send.Request

Ack_0. Ack_1. DT_O. DT_1.
Indication Indication Request Request

1 f ! !

Fig. 5 A4BP: interface of the sender equivalent circuit

u.Send.Request D ——— u.Send.Confirm
g™

n.Ack_0.Indication I
n.Ack_1.Indication h’?”‘Il:l,
Lp.

Fig. 6 4BP: sender equivalent circuit

vY W]

n.DT_1.Request
n.DT_O.Request

IEE Proc.-Computers & Digital Techniques, Vol. 146, No. 5, September 1999

1.0
[
% 08
B T B
-9 L
x -
2 7
w 06 s i
2 VR T LY -
k] e LT
Zz
2 04
o
2
a

0
0.0 0.2 0.4 0.6 0.8 1.0
probability of u.Send_Request

Fig. 7 4BP: probabilistic analysis of the sender entity

“n.Ack_0.Indication = 0.0” —— “n.Ack_0.Indication =0.6” -- --
“n.Ack_0.Indication =0.1" ——= “n.Ack_0.Indication =0.7" --- -
“n.Ack_O.Indication=0.2” ---- “n.Ack_0.Indication = 0.8” ----
“n.Ack_0.Indication=0.3"-...: “n.Ack_0.Indication =0.9” ——
“n.Ack_0.Indication=04" =.— “n.Ack_0.Indication=1.0" ———
“n.Ack_0:Indication = 0.5” —-—-

dication, the probability of state WFAck_0 increases for
increasing values of the probability of u.Send.Request.
This is intuitive because, for a given number of acknowl-
edgments received, a larger number of requests implies a
longer stay in state WFAck_0.

From the diagram it can also be observed the joint effect of
the probabilities of u.Send.Request and n.Ack_0.Indication
on the occupation probability of state WFEAck_0. In particu-
lar, for lower values of the probability of u.Send. Request, an
increased probability of signal n.Ack_0.Indication corre-
sponds to a decreased value of the probability of state
WFAck_0. This indicates that, for low request rates, the
effect of the acknowledgment rate on the probability of
state WFAck_0 is dominant. Conversely, for higher request
rates, the distance between the curves tends to remain

|

f

constant, meaning that the effects of the two input conditions
on the probability of state WFAck_0 are much less related.

4.3 Verification of protocol stacks and
communication systems

The method of Section 4.1 can be exploited to analyse
entire protocol stacks and complete communication
systems. In fact, it is sufficient to separately construct the
hardware models (i.e., the equivalent circuits) for all the
entities in the system, to connect them to build a global
equivalent circuit, and to run on it Markovian verification.
Obviously, the complexity of the circuit, and therefore that
of the STG which is extracted from it, is usually high (e.g.,
in real cases, the extracted STG may have billions of
reachable states). However, thanks to the capabilities of
existing Markovian analysis tools (they can easily handle
finite state systems with over 10°° states and over 75
primary inputs), the method is viable and provides reliable
results in reasonably short computation times.

As an application example, let us consider the interac-
tion between the sender and the receiver entities of the
ABP. The two equivalent circuits are synthesised; also, a
model of the layer-1 protocol entity emulating the low-
level services is implemented. The three circuits are then
connected through the proper inputs and outputs, and the
interaction between sender and receiver is studied by
analyzing the resulting global equivalent circuit, shown
in Fig. 8. The circuit takes into account errors and losses in
the lower layer. When performing Markovian analysis, a
non-null probability on the input named Error allows the
behavior of the protocol to be studied in presence of errors
in the services provided by the lower layer. The analysis of
the circuit with a non-null probability assigned to the input
named Loss yields a probability of 1 for the sender entity
to be in state WFAck_0 or WFAck_I. This high-lights that
the protocol cannot be used in lossy environments due to
the lack of time-out mechanisms.

5 Conclusions

We have presented an approach to verification of commu-
nication protocols based on Markovian FSM analysis.

t

send.Request

sender
Ack_0. Ack_1. DT_0. DT_1.
Indication Indication Request Request

send.Indication

Receive.Indication

Receiver
DT_1. DT 0. Ack_1. Ack_0.
Indication Indication Request Request

4

[

-
e

ﬁbo.

>0

MUX

MUX

error

Fig. 8 ABP: interaction between sender and receiver

IEE Proc.-Computers & Digital Techniques, Vol. 146, No. 5, Septeinber 1999

loss

225

Thanks to the availability of efficient tools developed in the
context of logic synthesis the presented method is applic-
able to real communications systems, whose finite state
models may contain billions of states.

We have first described the technique in the case where a
single protocol entity is to be considered. Then, we have
shown how the method works on a simple example,
namely, the sender entity of the alternating bit protocol.
Finally, we have illustrated how the approach can be
extended to the case of more complex protocols, to entire
protocol stacks and to complete communication systems.

6 References

—

KEMENY, J., and SNELL, J.: ‘Finite Markov chains’ (D. Van Nostrand
Company 1967)
TRIVEDI, K.S.: ‘Probability and statistics with reliability, queueing,
and computer science applications’ (Prentice-Hall, 1982)
- BRYANT, R.: ‘Graph-based algorithms for boolean function manipula-
tion,” [EEE Trans. Comput., 1986, C-35, (8), pp. 79-85
CLARKE, E.M., FUNIITA, M., MCGEER, P.C., MCMILLAN, K.L., and
YANG, J.: ‘Multi-terminal binary decision diagrams: an efficient data
structure for matrix representation’, IEEE International Workshop on
Logic Synthesis, IWLS-93, May 1993, Lake Tahoe, CA, pp. 6a:1-15
5 BAHAR, R.I,FROHM, E., GAONA, C., HACHTEL, G.D., MACIL E.,
PARDO, A., and SOMENZI, F.: ‘Algebraic decision diagrams and their
applications’, Formal Methods in System Design, 1997, 10, pp. 171-206
6 BAIER, C., CLARKE, EM., HARTONAS-GARMHAUSEN, V,
KWIATKOWSKA, M., and RYAN, M.: ‘Symbolic model checking for
probabilistic processes’, Automata, Languages and Programming, 24th
International Colloquium, ICALP-97 Proceedings, 1997 (Springer-
Verlag, Berlin, Germany, pp. 430~-440)
7 HUTH, M., and KWIATKOWSKA, M.: ‘Quantitative analysis and
model checking’, IEEE Annual Symposium on Logic in Computer
Science, 1997, pp. p.111-122

SN

226

8 COUDERT, O., BERTHET, C., and MADRE, J.C.. ‘Verification of

sequential machines using boolean functional vectors’, IFIP Intl. Work-
shop on Applied Formal Methods for Correct VLSI Design, November
1989, Leuven, Belgium, pp. 111-128

9 COUDERT, O., and MADRE, J.C.: ‘A unified framework for the formal

verification of sequential circuits’, IEEE International Conference on
Computer-Aided Design, ICCAD-90, November 1990, Santa Clara, CA,
pp. 126-129

10 TOUATI, H., SAVOJ, H., LIN, B., BRAYTON, R.K., and SANGIO-
VANNI-VINCENTELLI, A.: ‘Implicit enumeration of finite state
machines using BDDs’, IEEE International Conference on Computer-
Aided Design, ICCAD-90, November 1990, Santa Clara, CA, pp. 130—
133

1

—_

CHO, H., HACHTEL, G.D., JEONG, S.W,, PLESSIER, B., SChWARZ,

E., and SOMENZI, E: ‘ATPG aspects of FSM verification’, IEEE

International Conference on Computer-Aided Design, ICCAD-90,

November 1990, Santa Clara, CA, pp. 134-137

12 BURCH, J.R.,, CLARKE, EM., MCMILLAN, K.L., and DILL, D.L.:
‘Sequential circuit verification using symbolic model checking’, ACM/
IEEE Design Automation Conference, DAC-27, June 1990, Orlando,
FL, pp. 46-51

13 HACHTEL, G.D., MACII, E., PARDO, A., and SOMENZI, F.: ‘Marko-
vian analysis of large finite state machines’, I[EEE Trans Comput.-Aid.
Des. Integr. Circuits Syst., 1996, CAD-1S5, (12), pp. 1479-1493

14 TSUI, C.Y., MONTEIRO, J., PEDRAM, M., DEVADAS, S., DESPAIN,
AM,, and LIN, B.: ‘Power estimation methods for sequential logic
circuits’, JEEE Trans. VLSI Syst., 1995, VLSI-3, (3), pp. 404-416

15 MATSUNAGA, Y., MCGEER, PC., and BRAYTON, RK. ‘On
computing the transitive closure of a state transition relation’, ACM/
IEEE Design Automation Conference, DAC-30, June 1993, Dallas, TX,
pp. 260-265

16 SARIKAYA, B.: ‘Principles of protocol engineering and conformance
testing’ (Ellis Horwood, 1993)

17 International Standards Organization, ‘IS-7498: Information processing

systems, open systems interconnection, basic reference model’, 1984,

Geneva, Switzerland

SENTOVICH, E.M., SINGH, K.J., MOON, C.W,, SAVOJ H., BRAY-

TON, RK. and SANGIOVANNI-VINCENTELLI, A.: ‘Sequential

circuits design using synthesis and optimization’, IEEE International

Conference on Computer Design, ICCD-92, October 1992, Cambridge,

MA, pp. 328-333

1

o0

IEE Proc.-Computers & Digital Techniques, Vol. 146, No. 5, September 1999

