
 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

ISBN 555555555/$10.00  2002 IEEE

Abstract – This work presents a software solution to the
problem of remotely authenticating software during
execution, which aims at assuring that the software is not
changed prior to and during execution. The solution is based
on a flow of idiosyncratic signatures that is generated by a
function hidden in the software to be authenticated and
validated by a remote computing component. The
TrustedFlow™ approach is complementary to many current
enhancements for secure computing and networking: while
other approaches provide privacy and authentication
protecting from the attacks of a man in the middle,
TrustedFlow™ protects from the attack of a man at the edge.

Index terms – trusted code execution; total security for
networked applications; trusted computing

I. INTRODUCTION

Software, especially in the context of data networks,
suffers from some inherent problems. These include
modifications, either by a malicious or inadvertent
attacker, malware distribution (e.g., viruses and Trojan
horses), and the use of malicious software remotely for
penetration, intrusion, denial-of-service (DoS), and
distributed DoS (DDoS).
TrustedFlow� is a software solution to the problem of
remotely authenticating code of software procedures and
protocols during execution, which aims at assuring that
the software is not changed prior to and during execution.
The solution is achieved by continuously emanating a
flow of idiosyncratic signatures that authenticate the
software from which they have emanated. The
idiosyncratic signatures are generated by a secret function
that is hidden (e.g., obfuscated) in the software and whose
execution is subordinated to the proper execution of the
software being authenticated. The flow of signatures is
validated at a remote computing component. This
generation and validation method of idiosyncratic
signature is called TrustedFlow� protocol. The
TrustedFlow� protocol is a general add-on protection
tool that complements other security tools such as trusted

○ Computer Engineering Department, Torino Polytechnic, Italy
◊ Synchrodyne Networks, Inc. New York, NY
□ Computer Science Department, Columbia University, New
York, NY

computing platforms, authentication and encryption
protocols. No other authentication method (to the best of
our knowledge) certifies the software continuously during
run-time by emanating idiosyncretic signatures. In other
words, while other approaches provide privacy and
authentication protecting from the attacks of a man in the
middle, TrustedFlow� protects from the attack of a man
at the edge. The TrustedFlow protocol has broad
synergistic implications on various computing and
networking protection means.
The TrustedFlow� protocol has broad potential
applications in grid-computation, intrusion avoidance,
digital right management, and the protection of server
applications from misbehaving client programs (e.g.,
malware SSL and IPSec). Possible applications include
(1) DoS and intrusion avoidance assuring trusted clients,
(2) VPN add-on assuring correct software execution
(malware free), (3) Protecting client applications (from
clients) in content handling programs (digital right
management - DRM), (4) Protecting server applications
from misbehaving client programs, such as, malware SSL,
malware IPSec, (5) Protecting (Java) applets in Peer-2-
Peer collaborative computing, (6) Trusted network
management, and (7) Protecting the routing infrastructure
� avoiding misuse of the various routing protocols �
and (8) Trusted traffic conditioning, i.e., remote
verification of compliance to a traffic profile.

II. TRUSTEDFLOW� PROTOCOL PRINCIPLES

This solution has two basic components. The first is the
preparation and manipulation of the software code at the
source. This is needed to assure that the idiosyncratic
signature generation is bound in an inseparable manner to
the actual functional code. The first component generates
a �combined module� to be executed at run time. The
second component is the signature generation and
checking during run-time. The two above components are
based on the following.
• Interlocking is the general term we use to describe a

combining of original executable software modules
(original function) together with an idiosyncratic
(pseudo-random) signature generator (which is used to
generate an unpredictable flow of tags) forming a
�combined module.�

The TrustedFlow Protocol
Idiosyncratic Signatures for Authenticated Execution

Mario Baldi○, Member, IEEE, Yoram Ofek◊, Member, IEEE, and Moti Yung□

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

ISBN 555555555/$10.00  2002 IEEE

• Program Hiding the �combined module� is prepared
in such a way as to ensure that reverse engineering is
difficult enough so that it becomes functionally
infeasible.

Messages with
Sequence of

Tags
(Idiosyncratic Signatures)

Dynamic Modifications
of Pseudo-Random

GeneratorTrusted Flow
Generator (TFG™)

Software

Untrusted
Computing

Environment

Trusted
Tag

Checker
(TTC™)

(Verifies
Tags

before
Mapping &
Forwarding

Packets)

Second Computer
e.g., Network

Interface
First

Computer

Figure 1: TrustedFlow� networking and computing

During run-time, the following two components define
the TrustedFlow protocol:
• A Trusted Flow Generator (TFG) (see Figure 1 and

Figure 2) executes the �combined module�, which
constantly outputs its results (such as messages)
together with a flow of tags, constituting the
continuous idiosyncratic signature of the �combined
module�s� run-time execution.

• A Trusted Tag Checker (TTC) (see Figure 1 and
Figure 2) is used to remotely authenticate (verify) the
flow of idiosyncratic signatures that forms the
continuous idiosyncratic signature emanated from the
�combined module,� thus assuring that the correct
�combined module� was executed in run-time.

Messages with
Sequence of

Tags
(Idiosyncratic Signatures)

Trusted
Tag

Checker
(TTC™)

First Computer:
Wireless

Base-station

Untrusted
Computing

Environment

Trusted
Flow

Generator
(TFG™)

E.g., protecting mobile/wireless devices
with limited computing/storage power

Second Computer:
Mobile/Wireless

Device

Figure 2: �Reverse� TrustedFlow � protecting mobile devices

A �reverse� TrustedFlow protocol, as shown in Figure 2,
is a variant of the TrustedFlow� protocol, such that, the
TTC function is not in the network interface but in the
end device. The �reverse� TrustedFlow can be used for
protecting mobile/wireless devices. Such devices typically
feature limited computing and storage capabilities. In this
case, the mobile device contains the TTC functionality in
order to off-load in a trusted manner some computations,
such as anti-virus programs, to a wireless base-station,
which contains the TFG functionality. The rationale is
that the base station has vast computing resources, while

mobile devices are limited in computing and storage
capabilities.
As mentioned, the TFG contains a hidden program that is
obfuscated into the program used for generating and
sending messages. More specifically, the TFG contains
the program for sending messages, which contains an
obfuscated secret part that generates a pseudo-random
sequence of n-bit tags (idiosyncratic signature). Only the
TTC is able to locally generate the sequence of n-bit tags.
The TTC then compares the locally generated sequence
with the received sequence. A successful comparison
verifies that the legitimate program was used to generate
and send the messages. Next, we briefly discuss what is
obfuscation, which is one of the key components of the
TrustedFlow protocol.

III. CREATING A TRUSTED SYSTEM ENVIRONMENT

TrustedFlow� (hence the TFG and TTC) is a general
software tool with wide commercial and military
applications. Through a novel use of idiosyncratic
signatures the TrustedFlow protocol can ensure:
(i) That users cannot change the software modules that

compute, generate, and send messages; and
(ii) That users cannot abuse the way various protocols

(such as, E-MAIL, PING, HTTP, TCP) are intended
to be used for generating messages and sending
messages � thereby avoiding, for example, the
DoS/DDoS/intrusion phenomena.

In essence, the TrustedFlow� protocol creates a
combined trusted computing/networking environment by
using an idiosyncratic signature that is checked by the
TTC component operating in a trusted environment (e.g.,
firewall) together with an idiosyncratic signature, which is
generated by a TFG component operating in an untrusted
environment. TrustedFlow� complements trusted
computing platforms by enabling remote verification that
the right software is executed, and in effect is constructing
a �remote trust� mechanism. The TrustedFlow protocol
has low complexity (no need for special hardware), and
thus, it is less expensive and more scalable than other
solutions.

	Introduction
	TrustedFlow™ Protocol Principles
	Creating a Trusted System Environment

