
 

  

 
 

IDIOSYNCRATIC SIGNATURES FOR AUTHENTICATED EXECUTION 

The TrustedFlow™ Protocol and its Application to TCP

Mario Baldi 
Computer Engineering Department 

Torino Polytechnic 
Torino, Italy 

mario.baldi@polito.it 

Yoram Ofek 
Synchrodyne Networks, Inc. 

New York, NY 
ofek@synchrodyne.com 

Moti Yung 
Computer Science Department 

Columbia University 
New York, NY 

moti@cs.columbia.edu
 
ABSTRACT 
Assuring that a given code is faithfully executed with 
defined parameters and constraints is an open problem, 
which is especially important in the context of computing 
over communications networks. This work presents 
TrustedFlow™, a software solution to the problem of 
remotely authenticating code during execution, which 
aims at assuring that the software is not changed prior to 
and during execution. A flow of idiosyncratic signatures is 
continuously generated and associated to transmitted data 
by a secret function that is hidden (e.g., obfuscated) in the 
software and whose execution is subordinated to the 
proper execution of the software being authenticated. The 
flow of signatures is validated by a remote component.  
KEY WORDS 
Trusted computing; trusted code execution; trusted 
communication software execution; trusted 
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1 Introduction 
Software, especially in the context of data networks, 
suffers from some inherent problems. These include 
modifications by an either malicious or inadvertent user, 
malware distribution (e.g., viruses and “Trojan horses”), 
and the use of malicious software remotely for 
penetration, intrusion, denial-of-service (DoS), and 
distributed DoS (DDoS). For example, a rogue user may 
manipulate the code of a given protocol (such as TCP) and 
gain an unfair advantage in using network bandwidth. 
TrustedFlow™ is a software solution aimed at 
overcoming these problems and at assuring (in many 
typical scenarios) that operations are executed by a trusted 
software source. In current software systems many 
reactive techniques that try to prevent malware attacks are 
employed, but are mostly after-the-fact and inaccurate in 
that they adversely affect innocent users.  
The TrustedFlow™ protocol is different and more 
effective. The solution is based on continuous 
authentication, ensuring at run-time that the correct 
software has been employed. Continuous authentication is 
achieved by a continuous flow of idiosyncratic signatures 
that are constantly being generated and emanated during 
execution. This method guarantees that the correct 
software modules are used at run time and is called 

TrustedFlow™ because the authenticity of the executed 
software and its configuration parameters can be trusted. 
The TrustedFlow™ protocol has not been designed with a 
specific application in mind and can be used in various 
computing and networking scenarios, either by itself or 
together with other existing security solutions. After 
having presented some previous work related to the 
TrustedFlow™ protocol in Section 2 and having described 
the TrustedFlow™ basic principles in Section 3, this paper 
presents its application for authenticating the execution of 
the transmission control protocol (TCP) software (see 
Section 4). Such application is not intended as a rationale 
and motivation for the TrustedFlow™ protocol. Rather, 
being a basic tool to ensure trusted code execution, the 
TrustedFlow™ protocol can be used in various contexts 
and enables a plethora of new applications and services.  
The TrustedFlow™ protocol is an add-on software 
protection component intended to be included within other 
protocols, such as those, for example, of distributed 
computation (e.g., grid computing), traffic generation 
(e.g., TCP), and management (e,g., SNMP).  In essense, 
the TrustedFlow™ protocol provides run-time continuous 
(multi-factor) authentication, certifying the authenticity of 
software modules that were used to compute, generate, 
and send messages. As such, it becomes evident that the 
TrustedFlow™ protocol has broad applications in both 
networking and computing for military and commercial 
environments. Moreover, in comparison with other 
network and computer security solutions, the 
TrustedFlow™ protocol minimizes the number of 
operations per data packet. 
Possible applications of the TrustedFlow™ protocol 
include: (1) DoS and intrusion avoidance assuring trusted 
clients, (2) VPN add-on assuring correct software 
execution (malware free), (3) protecting client 
applications (from clients) in content handling programs 
(digital right management - DRM), (4) protecting server 
applications from misbehaving client programs, such as: 
malware SSL, malware IPSec, (5) protecting (Java) 
applets in Peer-2-Peer collaborative computing, (6) 
protecting the routing infrastructure - avoiding misuse of 
the various routing protocols, (7) trusted network 
management, and (8) trusted traffic conditioning, i.e., 
remote verification of compliance to a traffic profile.  



 

  

2 Related Work 
The TrustedFlow™ protocol complements many of the 
current enhancements for secure computing and 
networking protocols, since (to the best of our knowledge) 
no other authentication method certifies the software 
continuously during run-time by emanating idiosyncretic 
signatures. In other words, while other approaches provide 
privacy and authentication protecting from the attacks of a 
man in the middle, TrustedFlow™ protects from the 
attack of a man at the edge. The TrustedFlow™ protocol 
has broad synergistic implications on various computing 
and networking protection means.  

2.1 Synergy: Cryptographic Authentication 
Cryptographic methods for data authentication, e.g., 
digital signature and message authentication code (MAC) 
are used for authenticating data flows — e.g., IPsec , 
TLS , and SSL . They can be combined with our protocol 
for data authentication and signing, which is not the goal 
of the TrustedFlow™ protocol. The combined 
authentication will assure the data content and the 
software code that generated it. 

2.2 Synergy with Biometric Signature 
Human generated idiosyncratic signature is typically 
associated with biometrics. Biometric signatures generally 
use biometric data (such as a fingerprint image, a 
voiceprint recording, or some other replica of a physical 
feature) in order to identify people. In our context, 
biometric signatures are used to verify the authenticity of 
computing and networking users. Although biometric 
signatures are continuously improving and are generally 
quite reliable, when the signature information is 
communicated through a computer over a network, the 
software protocol that is used can be subject to intrusion 
in various ways (including “Trojan horses”). For example, 
an attacker could simply bypass the sensor that is feeding 
biometric data. In order to solve this biometric signature 
vulnerability hardware is often used, such as tamper-
resistance packaging, power interruption circuitry, and a 
computing hardware module that continuously monitors 
the biometric system’s software to ensure the integrity of 
the overall operation.  
The TrustedFlow™ protocol can be a highly effective 
measure used to ensure the integrity of the biometric 
signature together with the software modules used to 
communicate the information among computers over the 
network. More specifically, using the TrustedFlow™ 
protocol would extend the biometric signature to include 
an idiosyncratic signature of the computing and 
communicating software modules. The combined 
biometric and executed software signatures are performed 
by the computing device that receives the information and 
requires the user to verify its authenticity. The advantage 
of this novel solution is that there is no need for any 
special hardware, and consequently can be easily 
deployed on any system.  

2.3 Synergy with trusted computing 
Two notable complementary activities will further 
enhance the TrustedFlow™ protocol by ensuring that the 
computing platform as a whole is to be trusted (see [2]): 
• TCPA (trusted computing platform alliance) is an 

industry working group that is focusing on improving 
trust and security on computing platforms [2]. The goal 
of the TCPA specifications is to enhance hardware and 
operating system based trusted computing platform that 
implements trust into client, server, networking, and 
communications platforms; and  

• Next-Generation Secure Computing Base (NGSCB), 
formerly codenamed Palladium, is an evolutionary set of 
features for Microsoft Windows. Palladium will provide 
individuals and groups of users greater data security, 
personal privacy, and system integrity. In addition, 
Palladium will offer significant new benefits for network 
security and content protection.  

Both TCPA and Palladium are comprehensive hardware 
and software solutions that require special hardware, 
while our software solution does not require any special 
hardware. On the other hand, once the trusted computing 
platforms are available, the security provided by the 
TrustedFlow™ protocol will be further increased and it 
can take advantage of these platforms, enhancing them 
with its remote assurance function. 

3 TrustedFlow™ Protocol Principles 
Our solution has two basic components. The first is the 
preparation and manipulation of the software code at the 
source. This is needed to assure that the idiosyncratic 
signature generation is bound in an inseparable manner to 
the actual functional code. The second component is the 
protocol generation and checking aspect of the solution 
during run-time. 
The first component  (discussed in Section 3.2) generates  
a “combined module” to be executed at run time: 
• Interlocking is the general term we use to describe a 

combining of original executable software modules 
(original function) together with an idiosyncratic 
(pseudo-random) signature generator (which is used to 
generate an unpredictable flow of tags) forming a 
“combined module.”  

• Program Hiding The “combined module” is prepared 
in such a way as to ensure that reverse engineering is 
difficult enough so that it is functionally infeasible. 

During run-time, the following two components define the 
TrustedFlow™ protocol:  
• A Trusted Flow Generator (TFG) (Figure 1 and 

Figure 2) executes the “combined module”, which 
constantly outputs its results (such as messages) together 
with a flow of tags, constituting the continuous 
idiosyncratic signature of the “combined module’s” 
run-time execution.  

• A Trusted Tag Checker (TTC) (Figure 1 and Figure 2) 
is used to remotely authenticate (verify) the flow of 
idiosyncratic signatures that forms the continuous 



 

  

idiosyncratic signature emanated from the “combined 
module”, thus assuring that the correct “combined 
module” was executed in run-time. 

3.1 Basic Principles 
The TrustedFlow™ protocol, as shown in Figure 1, is 
based on a Trusted Flow Generator (TFG) in the trusted-
to-be programs and a Trusted Tag Checker (TTC) 
function on another computer or as part of some network 
interface (e.g., firewall, gateway). The TFG contains a 
hidden (e.g., obfuscated [1]) program part that generates a 
pseudo-random sequence of n-bit tags (idiosyncratic 
signature). The n-bit tags (where n is small - typically 
only 1 bit) are included in the sequence of messages (e.g., 
inside data packet headers) that are sent from a first 
computer through the network to a second computer. At 
the second computer, the validity of the pseudo-random 
sequence of n-bit tags is checked and verified by the TTC. 
Sending a valid pseudo-random sequence of n-bit tags 
verifies that the first computer has used the appropriate 
software (programs and parameters). Consequently, the 
second computer accepts and/or forwards only data 
packets from well-behaved sources.  
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Figure 1: TrustedFlow™ architecture 

A “reverse” TrustedFlow™ protocol, as shown in Figure 
2, is a variant of the TrustedFlow™ protocol, such that, 
the TTC function is not in the network interface but in the 
end device. The “reverse” TrustedFlow™ can be used, 
for example, for protecting mobile/wireless devices. Such 
devices typically feature limited computing and storage 
capabilities. In this case, the mobile device contains the 
TTC functionality in order to off-load in a trusted manner 
some computations, such as anti-virus programs, to a 
networked computer, which contains the TFG 
functionality. The rationale is that the base station has vast 
computing resources, while mobile devices are limited in 
computing and storage capabilities.  
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Figure 2: Reverse TrustedFlow™ architecture 

As mentioned, the TFG contains a hidden program that is 
obfuscated into the program used for generating and 
sending messages. More specifically, the TFG contains 

the program for sending messages, which contains an 
obfuscated secret part that generates a pseudo-random 
sequence of n-bit tags (idiosyncratic signature). Only the 
TTC is able to locally generate the sequence of n-bit tags. 
The TTC then compares the locally generated sequence 
with the received sequence. A successful comparison 
verifies that the legitimate program was used to generate 
and send the messages. Next, we briefly discuss what is 
obfuscation, which is one of the key components of the 
TrustedFlow™ protocol. 

3.2 Program Hiding with Secure 
Interlocking 

In general, the TrustedFlow™ protocol assures that a 
“combined module” execution is performed by a 
computing system. Part of this “combined module” is the 
original computing functionality (or plain program, see 
Figure 3) whereas some other part of this “combined 
module” is a signal generation method, which produces 
unpredictable signals (by, for example, a 
cryptographically strong pseudo random generator). The 
mechanisms make sure to interlock the parts into the 
“combined module” - see Figure 3.  
The interlock means that all parts must be performed at 
the same time. The operation part, which is factored into 
the “combined module,” is trusted (and is associated with 
an execution of specific computations (e.g., a network 
access method), operation limitations (such as 
transmission rate, number of times before renewal of 
precondition for next operation, etc.). The signal 
generation produces unpredictable signals as its 
“idiosyncratic signature.”  The checking is done merely 
by being able to reproduce and check the signature that 
could have only be generated at the interlocked program 
(due to the strength of the interlocking and the 
cryptographic unpredictability of pseudorandom signals). 
If the signature verification passes, it means that the other 
(operation) part of the interlocked module was performed 
as well. Thus, it was performed subject to the associated 
limitation, namely as a trusted one.  
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Figure 3: Various possible methods for constructing the secure 

“combined module” 

As shown in Figure 3, there are various possible methods 
for constructing the “combined module” as a single logic 
program. The system for providing the “combined 
module” gets as inputs: (1) random bit stream as an 



 

  

interlocking parameter and (2) plain program consisting of 
logic modules (as shown in Figure 3). It performs the 
integration of the logic modules using three different 
methods for secure integration in a single logic program – 
“combined module”: 
• An “obfuscator”  (Figure 3A), and/or   
• A “program encrypter” (Figure 3B), and/or  
• A “hidden program generator” (Figure 3C). 
The first method of software obfuscation (Figure 3A), 
relies solely on software methods. It involves 
transforming the module into a functionally equivalent but 
hard to understand module. Obfuscation methods have 
been studied and even automated [1][3][4]. They rely on 
transforming the code in various ways so that the result is 
a scrambled version of the original code. While, it is 
understood that with a lot of reverse engineering efforts, 
one can de-obfuscate a program, the technology is such 
that the reverse engineer needs a lot of effort. Since the 
modules can be obfuscated every so often (i.e., 
dynamically) and with new signature parameters, the task 
of reverse engineering the module can be made hard and 
non cost-effective. Obfuscation methods, also known as 
“tamper proof software” have been studied in recent years 
in various software technologies [2], and several 
companies offer such services. Let us review some aspect 
of obfuscation methods. 
3.2.1 Obfuscation  
A program is transformed using an automated method that 
is formally defined as: 
Obfuscation: an obfuscator O is a probabilistic 
"compiler" that takes as input a program (or circuit) P 
and produces a new program O(P) that has the same 
functionality as P, yet is "unintelligible" in some sense.  
Most of the obfuscator applications are based on an 
interpretation of the "unintelligibility" condition in 
obfuscation as meaning that O(P) is a “virtual black box.” 
Code obfuscation is similar to code optimization, 
however, obfuscation maximizes obscurity while 
minimizing execution time, whereas optimization only 
minimizes execution time. 
3.2.2 Dynamic modification of obfuscated 

codes and parameters 
Currently, obfuscated codes are used primarily for content 
protection programs and programs that manage content 
locally, and not for interlocking two programs securely for 
remote signaling (e.g., by using secure sequence of n-bit 
tags). A novelty of TrustedFlow™ protocol is the use of 
obfuscation (or other software-hiding methods) to 
“interlock”:   
1. The known performance characteristics of the packet 

generation portion of the software that affects the 
entire network and servers, together with 

2. The unknown unpredictable individualized sequence 
of n-bit tag (pseudo-random) generation software 
used for secure signaling. 

This in turn enables the codification and verification of 
various other aspects (such as, type of check, performance 
parameters, etc.) by using dynamic modification of the 

pseudo-random generator in the TFG, as was shown in 
Figure 1, in order to dynamically manage and refresh the 
obfuscated part of TFG. This serves to increase hardness 
of de-obfuscation and making de-obfuscation functionally 
infeasible. 
3.2.3 Other hiding methods 
There are other possible methods for program hiding. The 
second method of program encrypter (see Figure 3B), 
relies on having an end-to-end secure authenticate channel 
between the program generator and the place where the 
program is to be run. It may be that the program is then 
decrypted and executed in a “tamper proof” part of the 
architecture. A particularly attractive method for 
implementing this may be the TCPA (Trusted Computing 
Platform Alliance) architecture [2], led by major IT 
companies. The architecture enables portions of the 
software to be executed without the user controlling it. 
Originally, it may have been motivated by Digital Right 
Management of content distribution, but it can be used for 
execution of software that we do not want to allow the 
local user an ability to alter. 
The third method (Figure 3C) may embed the combined 
module as is in a co-processor that is protected or hide 
part of the execution is protected smart cards. This method 
may assume that the function of the functional module 
may be or should be performed at a remote location or a 
separate card (e.g. a network controller). 
The result of the three methods is the formation of 
“combined modules”, which make it practically 
impossible to learn how the unpredictable idiosyncratic 
signature is generated. Note again that the objective is not 
necessarily to hide the original computing functionality 
(or plain program), but rather to hide a “secret signature 
generating function” within the original computing 
functionality.  
The system for a secure “combined module” integrates the 
operational component and the signature component into a 
virtually single logic module. This module hides certain 
rules of execution, thus providing that the mechanism is 
assured to interlock the idiosyncratic signature generation 
and the rules of execution. In particular, the system is run 
wherein one of the software logic modules provides rules 
of transmission for accessing the network. These rules of 
transmission may compute certain limitations and 
conditions on the operation of the protocol: performance 
characteristics, access characteristics, transmission 
limitations, transmission rates, window sizes, port 
numbers, IP addresses, network addresses, quotas, 
renewable quotas, packet structure limitations, schedule. 
Indeed, it is possible to combine rules as well to assure 
that a number of execution rules are being followed for 
various transmissions distributed computation operations. 
The result is that a mere check of signature validity 
assures that the operational module with the constraints 
and limitation was followed by the software. Thus, many 
assurances are encompassed within the validity of the 
signature, due to the notion of “interlocked execution.” 



 

  

4 Trusted TCP: an Example of 
TrustedFlow™ Deployment  

This section describes a sample deployment of the 
TrustedFlow™ protocol in data networks. In particular, 
the paper provides a high level description of how to 
perform secure interlocking of a TFG in the transmission 
control protocol (TCP) software that is responsible for 
flow and congestion control over the Internet. 
The TrustedFlow™ protocol has not been designed with 
this specific application in mind; hence, the content of this 
section not intended as a rationale and motivation for the 
TrustedFlow™ protocol, but rather as an example of its 
deployment. The reason for addressing secure interlocking 
of TCP as a TrustedFlow™ application is twofold. First, 
being the TCP code publicly available and its functional 
specification well known, it is suitable to be used as a case 
study. Second, as explained in Section 4.1 below, 
modified TCP software can cause unfair sharing of 
network resources — if deployed on a small scale — or 
even a global failure of the Internet — if widely deployed.  

4.1 TCP Principles of Operation and 
Motivation for Secure Interlocking  

TCP includes a number of operational rules for error, 
flow, and congestion control. A sliding window 
mechanism limits the amount of data sent into the network 
before receiving confirmation of its reception (a.k.a. 
acknowledgment). TCP congestion control aims at 
recovering from congestion, or avoiding it in the first 
place, by reducing the transmission rate. The sender uses 
segment loss events to infer congestion in any routers on 
the path of its TCP connection. A segment loss event is 
identified by either the expiration of the time-out 
associated to the lost segment, or a duplicated 
acknowledgement received for a previous segment. The 
transmission rate is changed by modifying the size of a 
transmission window according to an algorithm called 
AIMD (additive increase, multiplicative decrease). This 
algorithm aims at trying to achieve maximum utilization 
of network resources by slowly increasing — additive 
increase — the window size during periods of low 
congestion. As congestion is detected, the sender is 
supposed to react immediately by significantly reducing 
its transmission rate, i.e., the size of its transmission 
window — multiplicative decrease. 
If all TCP senders using a network resource, such as a 
link, behave according to the defined TCP flow and 
congestion control algorithm, they all share (more or less 
equally) the network resource. On the contrary, if a TCP 
source is misbehaving — for example, not reducing its 
transmission window size — it could grab a large fraction 
of the bandwidth and shut up well-behaving ones. Thus, 
misbehaving TCP senders can compromise the network 
performance as perceived by the users deploying well-
behaving TCP code.  
The gravity of the situation arising by a large number of 
such misbehaving TCP senders can be fully understood by 
looking back at the motivations for the above mentioned 

congestion control algorithms. The original TCP 
specification did not include such features, i.e., the 
protocol operation was based on a fixed size congestion 
window. This was the cause of the severe and irreversible 
congestion that the Arpanet experienced in October 1986: 
the average throughput on the 32 kb/s links constituting 
the network was down to 40 b/s. Heavy traffic brought to 
the congestion of links, buffers feeding them overflowed, 
and packets were discarded. Consequently, TCP senders, 
not receiving acknowledgements for lost transmitted 
packets, timed-out and retransmitted a whole window-
worth of packets (including some possibly received out-
of-order from their destination), thus perpetrating the 
congestion. The only way out of this congested state had 
been closing a large number of TCP connections by 
terminating the applications that opened them.  

The introduction of congestion control based on varying 
TCP’s transmission window size has eliminated the risk of 
such an irreversible congestion state. However, the 
conditions that triggered the irreversible congestion 
experienced in 1986 would be reproduced if a very large 
number of users deployed TCP code modified to achieve 
larger throughput by avoiding properly reducing the 
transmission window. Since the consequence of such an 
irreversible congestion is the impossibility of 
communicating through the whole Internet, such a 
modified TCP code could be distributed as a way of 
carrying on as a global, distributed denial of service 
attack. Achieving widespread deployment of the modified 
code could not even be very difficult: for example, the 
modified TCP code for the main operating systems could 
be made publicly available for download and advertised as 
yet another simple fix to improve the performance of file 
transfers and web page downloads (many such “fixes” are 
currently being offered). This would trigger a time bomb 
that would approach its detonation as more and more 
Internet users install the “improved” TCP code. The time 
of the “Internet explosion” would be unpredictable and the 
phenomenon completely unexpected. 
Interlocking a TFG with the TCP software allows the 
network to verify that a TCP sender is executing a proper 
TCP implementation and hence it is well behaving. A 
Trusted Tag Checker (TTC) at the network boundary, as 
shown in Figure 1, can identify TCP segments not 
generated by Trusted TCP Code — that plays the role of 
the TFG in the architecture depicted in Figure 1 — and 
apply to them a pre-defined handling policy, such as 
discarding the frame or sending it with lower priority. 

4.2 Realization of Secure Interlocking for 
Trusted TCP  

This section describes a possible TrustedFlow™ protocol 
realization that allows the network to verify the proper 
operation of a TCP implementation, which is labeled 
Trusted TCP Code. Figure 4 is a functional block diagram 
of the high layers of a TCP/IP protocol stack used by 
various applications to transmit and receive data units to 
and from a multiple other applications through the socket 
interface layer. 
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Figure 4: Example: Trusted TCP layer (a TFG implementation) 

The Trusted TCP Code includes a pseudo-random 
generator of security information — n-bit tags — to be 
associated to the TCP segments being transmitted. The 
security tag associated to a TCP segment have to objective 
of certifying that the TCP segment was generated by 
Trusted TCP Code, i.e., that the TCP transmitter that 
originated a TCP segment operates in compliance with the 
rules of transmission — i.e., flow and congestion control 
— specified by a given TCP standard (e.g., TCP Reno).  
Figure 5 describes the operations performed by the 
Trusted TCP Code for the transmission of a TCP segment. 
Besides an n-bit tag, a Security Tag Serial Number (STSN) 
is associated to each TCP segment prepared for 
transmission. The n-bit tag is obtained from a pre-
computed pseudo-random bit sequence that is known to 
both, and only, the TFG and the TTC; the STSN 
identifyes the n-bit tag position within the sequence. The 
n-bit tag and its STSN are transmitted in the option field 
within the TCP header. The STSN is essential for a TTC 
to locate within the pseudo-random bit sequence the n-bit 
tag contained in inspected TCP segments that were 
received out of order or after a lost TCP segment. 
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Figure 5: Transmission of a TCP segment 

The TTC embedded, for example, in a network appliance 
at the boundary of a network domain, checks that the n-bit 
tag associated to each TCP segment has been properly 
generated, i.e., that the TCP segments were sent by 
Trusted TCP Code. If the check on the tag reveals that a 
TCP segment was not properly generated, it is discarded 
or mapped to a lower priority service through the network 
domain. In the former case, TCP senders running non 
trusted code cannot at all use the network services. In the 
latter case, while non trusted TCP code can transfer data 

through the network domain, it cannot negatively affect 
the performance achieved by Trusted TCP Code. In fact, 
in case of congestion, TCP segments generated by non 
trusted senders are discarded with higher probability than 
TCP segments generated by Trusted TCP Code. 
The TrustedFlow™ protocol assures proper operation of a 
TCP sender — and, in general, of the sender of a data 
stream — not the authenticity or privacy of transmitted 
data. For applications that require authentication and 
privacy of transmitted data, a proper authentication and/or 
privacy protocol, such as IPSec, TSL or SSL, can be used 
to complement TrustedFlow’s capabilities.  

5 Conclusions: Creating Trusted System  
Environment 

TrustedFlow™ is a general software tool with wide 
commercial and military applications. In essence, the 
TrustedFlow™ protocol creates a combined trusted 
computing/networking environment by using an 
idiosyncratic signature — generated by a trusted flow 
generator (TFG) component operating in an untrusted 
environment — that is checked by a trusted tag checker 
(TTC) component operating in a trusted environment 
(e.g., firewall). TrustedFlow™ complements trusted 
computing platforms by enabling remote verification that 
the right software is executed; it constructs a  “remote 
trust” mechanism.  
This paper presents the basic principles of the 
TrustedFlow™, its synergies with other existing network 
security approaches, and an example of its deployment to 
authenticate the execution of the transmission control 
protocol (TCP) code. The TrustedFlow™ protocol has not 
been designed with this specific application in mind; 
authentication of TCP software is presented as an easy to 
understand and meaningful example of its application, not 
with the aim of providing a rationale and motivation. 
Rather, being a basic tool to ensure trusted code 
execution, the TrustedFlow™ protocol can be used in 
various contexts and enables a plethora of new 
applications and services.  
In comparison with other network and computer security 
solutions, the TrustedFlow™ protocol has a lower 
complexity (no need for special hardware), and thus, is 
less expensive and more scalable. The TrustedFlow™ 
protocol can be used in various computing and networking 
scenarios, either by itself or together with other existing 
security solutions. A prototype of the TrustedFlow™ 
architecture sponsored by Microsoft Research is under 
development at Torino Polytechnic. 
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