

IDIOSYNCRATIC SIGNATURES FOR AUTHENTICATED EXECUTION

The TrustedFlow™ Protocol and its Application to TCP

Mario Baldi
Computer Engineering Department

Torino Polytechnic
Torino, Italy

mario.baldi@polito.it

Yoram Ofek
Synchrodyne Networks, Inc.

New York, NY
ofek@synchrodyne.com

Moti Yung
Computer Science Department

Columbia University
New York, NY

moti@cs.columbia.edu

ABSTRACT
Assuring that a given code is faithfully executed with
defined parameters and constraints is an open problem,
which is especially important in the context of computing
over communications networks. This work presents
TrustedFlow™, a software solution to the problem of
remotely authenticating code during execution, which
aims at assuring that the software is not changed prior to
and during execution. A flow of idiosyncratic signatures is
continuously generated and associated to transmitted data
by a secret function that is hidden (e.g., obfuscated) in the
software and whose execution is subordinated to the
proper execution of the software being authenticated. The
flow of signatures is validated by a remote component.
KEY WORDS
Trusted computing; trusted code execution; trusted
communication software execution; trusted
communication middleware; trusted network applications.

1 Introduction
Software, especially in the context of data networks,
suffers from some inherent problems. These include
modifications by an either malicious or inadvertent user,
malware distribution (e.g., viruses and “Trojan horses”),
and the use of malicious software remotely for
penetration, intrusion, denial-of-service (DoS), and
distributed DoS (DDoS). For example, a rogue user may
manipulate the code of a given protocol (such as TCP) and
gain an unfair advantage in using network bandwidth.
TrustedFlow™ is a software solution aimed at
overcoming these problems and at assuring (in many
typical scenarios) that operations are executed by a trusted
software source. In current software systems many
reactive techniques that try to prevent malware attacks are
employed, but are mostly after-the-fact and inaccurate in
that they adversely affect innocent users.
The TrustedFlow™ protocol is different and more
effective. The solution is based on continuous
authentication, ensuring at run-time that the correct
software has been employed. Continuous authentication is
achieved by a continuous flow of idiosyncratic signatures
that are constantly being generated and emanated during
execution. This method guarantees that the correct
software modules are used at run time and is called

TrustedFlow™ because the authenticity of the executed
software and its configuration parameters can be trusted.
The TrustedFlow™ protocol has not been designed with a
specific application in mind and can be used in various
computing and networking scenarios, either by itself or
together with other existing security solutions. After
having presented some previous work related to the
TrustedFlow™ protocol in Section 2 and having described
the TrustedFlow™ basic principles in Section 3, this paper
presents its application for authenticating the execution of
the transmission control protocol (TCP) software (see
Section 4). Such application is not intended as a rationale
and motivation for the TrustedFlow™ protocol. Rather,
being a basic tool to ensure trusted code execution, the
TrustedFlow™ protocol can be used in various contexts
and enables a plethora of new applications and services.
The TrustedFlow™ protocol is an add-on software
protection component intended to be included within other
protocols, such as those, for example, of distributed
computation (e.g., grid computing), traffic generation
(e.g., TCP), and management (e,g., SNMP). In essense,
the TrustedFlow™ protocol provides run-time continuous
(multi-factor) authentication, certifying the authenticity of
software modules that were used to compute, generate,
and send messages. As such, it becomes evident that the
TrustedFlow™ protocol has broad applications in both
networking and computing for military and commercial
environments. Moreover, in comparison with other
network and computer security solutions, the
TrustedFlow™ protocol minimizes the number of
operations per data packet.
Possible applications of the TrustedFlow™ protocol
include: (1) DoS and intrusion avoidance assuring trusted
clients, (2) VPN add-on assuring correct software
execution (malware free), (3) protecting client
applications (from clients) in content handling programs
(digital right management - DRM), (4) protecting server
applications from misbehaving client programs, such as:
malware SSL, malware IPSec, (5) protecting (Java)
applets in Peer-2-Peer collaborative computing, (6)
protecting the routing infrastructure - avoiding misuse of
the various routing protocols, (7) trusted network
management, and (8) trusted traffic conditioning, i.e.,
remote verification of compliance to a traffic profile.

2 Related Work
The TrustedFlow™ protocol complements many of the
current enhancements for secure computing and
networking protocols, since (to the best of our knowledge)
no other authentication method certifies the software
continuously during run-time by emanating idiosyncretic
signatures. In other words, while other approaches provide
privacy and authentication protecting from the attacks of a
man in the middle, TrustedFlow™ protects from the
attack of a man at the edge. The TrustedFlow™ protocol
has broad synergistic implications on various computing
and networking protection means.

2.1 Synergy: Cryptographic Authentication
Cryptographic methods for data authentication, e.g.,
digital signature and message authentication code (MAC)
are used for authenticating data flows — e.g., IPsec ,
TLS , and SSL . They can be combined with our protocol
for data authentication and signing, which is not the goal
of the TrustedFlow™ protocol. The combined
authentication will assure the data content and the
software code that generated it.

2.2 Synergy with Biometric Signature
Human generated idiosyncratic signature is typically
associated with biometrics. Biometric signatures generally
use biometric data (such as a fingerprint image, a
voiceprint recording, or some other replica of a physical
feature) in order to identify people. In our context,
biometric signatures are used to verify the authenticity of
computing and networking users. Although biometric
signatures are continuously improving and are generally
quite reliable, when the signature information is
communicated through a computer over a network, the
software protocol that is used can be subject to intrusion
in various ways (including “Trojan horses”). For example,
an attacker could simply bypass the sensor that is feeding
biometric data. In order to solve this biometric signature
vulnerability hardware is often used, such as tamper-
resistance packaging, power interruption circuitry, and a
computing hardware module that continuously monitors
the biometric system’s software to ensure the integrity of
the overall operation.
The TrustedFlow™ protocol can be a highly effective
measure used to ensure the integrity of the biometric
signature together with the software modules used to
communicate the information among computers over the
network. More specifically, using the TrustedFlow™
protocol would extend the biometric signature to include
an idiosyncratic signature of the computing and
communicating software modules. The combined
biometric and executed software signatures are performed
by the computing device that receives the information and
requires the user to verify its authenticity. The advantage
of this novel solution is that there is no need for any
special hardware, and consequently can be easily
deployed on any system.

2.3 Synergy with trusted computing
Two notable complementary activities will further
enhance the TrustedFlow™ protocol by ensuring that the
computing platform as a whole is to be trusted (see [2]):
• TCPA (trusted computing platform alliance) is an

industry working group that is focusing on improving
trust and security on computing platforms [2]. The goal
of the TCPA specifications is to enhance hardware and
operating system based trusted computing platform that
implements trust into client, server, networking, and
communications platforms; and

• Next-Generation Secure Computing Base (NGSCB),
formerly codenamed Palladium, is an evolutionary set of
features for Microsoft Windows. Palladium will provide
individuals and groups of users greater data security,
personal privacy, and system integrity. In addition,
Palladium will offer significant new benefits for network
security and content protection.

Both TCPA and Palladium are comprehensive hardware
and software solutions that require special hardware,
while our software solution does not require any special
hardware. On the other hand, once the trusted computing
platforms are available, the security provided by the
TrustedFlow™ protocol will be further increased and it
can take advantage of these platforms, enhancing them
with its remote assurance function.

3 TrustedFlow™ Protocol Principles
Our solution has two basic components. The first is the
preparation and manipulation of the software code at the
source. This is needed to assure that the idiosyncratic
signature generation is bound in an inseparable manner to
the actual functional code. The second component is the
protocol generation and checking aspect of the solution
during run-time.
The first component (discussed in Section 3.2) generates
a “combined module” to be executed at run time:
• Interlocking is the general term we use to describe a

combining of original executable software modules
(original function) together with an idiosyncratic
(pseudo-random) signature generator (which is used to
generate an unpredictable flow of tags) forming a
“combined module.”

• Program Hiding The “combined module” is prepared
in such a way as to ensure that reverse engineering is
difficult enough so that it is functionally infeasible.

During run-time, the following two components define the
TrustedFlow™ protocol:
• A Trusted Flow Generator (TFG) (Figure 1 and

Figure 2) executes the “combined module”, which
constantly outputs its results (such as messages) together
with a flow of tags, constituting the continuous
idiosyncratic signature of the “combined module’s”
run-time execution.

• A Trusted Tag Checker (TTC) (Figure 1 and Figure 2)
is used to remotely authenticate (verify) the flow of
idiosyncratic signatures that forms the continuous

idiosyncratic signature emanated from the “combined
module”, thus assuring that the correct “combined
module” was executed in run-time.

3.1 Basic Principles
The TrustedFlow™ protocol, as shown in Figure 1, is
based on a Trusted Flow Generator (TFG) in the trusted-
to-be programs and a Trusted Tag Checker (TTC)
function on another computer or as part of some network
interface (e.g., firewall, gateway). The TFG contains a
hidden (e.g., obfuscated [1]) program part that generates a
pseudo-random sequence of n-bit tags (idiosyncratic
signature). The n-bit tags (where n is small - typically
only 1 bit) are included in the sequence of messages (e.g.,
inside data packet headers) that are sent from a first
computer through the network to a second computer. At
the second computer, the validity of the pseudo-random
sequence of n-bit tags is checked and verified by the TTC.
Sending a valid pseudo-random sequence of n-bit tags
verifies that the first computer has used the appropriate
software (programs and parameters). Consequently, the
second computer accepts and/or forwards only data
packets from well-behaved sources.

Messages with
Sequence of

Tags
(Idiosyncratic Signatures)

Dynamic Modifications
of Pseudo-Random

GeneratorTrusted Flow
Generator (TFG)

Software

Untrusted
Computing

Environment

Trusted
Tag

Checker
(TTC)

(Verifies
Tags

before
Mapping &
Forwarding

Packets)

Second Computer
e.g., Network

Interface
First

Computer

Figure 1: TrustedFlow™ architecture

A “reverse” TrustedFlow™ protocol, as shown in Figure
2, is a variant of the TrustedFlow™ protocol, such that,
the TTC function is not in the network interface but in the
end device. The “reverse” TrustedFlow™ can be used,
for example, for protecting mobile/wireless devices. Such
devices typically feature limited computing and storage
capabilities. In this case, the mobile device contains the
TTC functionality in order to off-load in a trusted manner
some computations, such as anti-virus programs, to a
networked computer, which contains the TFG
functionality. The rationale is that the base station has vast
computing resources, while mobile devices are limited in
computing and storage capabilities.

Messages with
Sequence of

Tags
(Idiosyncratic Signatures)

Trusted
Tag

Checker
(TTC)

Wired server/
Base-station

Untrusted
Computing

Environment

Trusted
Flow

Generator
(TFG)

E.g., protecting mobile/wireless devices
with limited computing/storage power

Mobile/Wireless
Device

Figure 2: Reverse TrustedFlow™ architecture

As mentioned, the TFG contains a hidden program that is
obfuscated into the program used for generating and
sending messages. More specifically, the TFG contains

the program for sending messages, which contains an
obfuscated secret part that generates a pseudo-random
sequence of n-bit tags (idiosyncratic signature). Only the
TTC is able to locally generate the sequence of n-bit tags.
The TTC then compares the locally generated sequence
with the received sequence. A successful comparison
verifies that the legitimate program was used to generate
and send the messages. Next, we briefly discuss what is
obfuscation, which is one of the key components of the
TrustedFlow™ protocol.

3.2 Program Hiding with Secure
Interlocking

In general, the TrustedFlow™ protocol assures that a
“combined module” execution is performed by a
computing system. Part of this “combined module” is the
original computing functionality (or plain program, see
Figure 3) whereas some other part of this “combined
module” is a signal generation method, which produces
unpredictable signals (by, for example, a
cryptographically strong pseudo random generator). The
mechanisms make sure to interlock the parts into the
“combined module” - see Figure 3.
The interlock means that all parts must be performed at
the same time. The operation part, which is factored into
the “combined module,” is trusted (and is associated with
an execution of specific computations (e.g., a network
access method), operation limitations (such as
transmission rate, number of times before renewal of
precondition for next operation, etc.). The signal
generation produces unpredictable signals as its
“idiosyncratic signature.” The checking is done merely
by being able to reproduce and check the signature that
could have only be generated at the interlocked program
(due to the strength of the interlocking and the
cryptographic unpredictability of pseudorandom signals).
If the signature verification passes, it means that the other
(operation) part of the interlocked module was performed
as well. Thus, it was performed subject to the associated
limitation, namely as a trusted one.

Obfuscator

(e.g., interlock ing log ic)

Plain Program
(Logic modu les with
orig ina l com puting

Functiona lity)

Interlocking
Param eters

(e.g., Random Bit
Stream)

Obfuscated Program
(Sing le Log ic Prog ram –

“com bined m odule”)
A

Program Encrypter
(e.g., interlock ing log ic)

Encrypted Program
(Sing le Log ic Prog ram –

“com bined m odule”)

Hidden Program Generator
(inc lud ing d istributed execution)

Hidden Program
(Sing le Log ic Prog ram –

“com bined m odule”)

B

C

Idiosyncratic
Signature
Generator

Figure 3: Various possible methods for constructing the secure

“combined module”

As shown in Figure 3, there are various possible methods
for constructing the “combined module” as a single logic
program. The system for providing the “combined
module” gets as inputs: (1) random bit stream as an

interlocking parameter and (2) plain program consisting of
logic modules (as shown in Figure 3). It performs the
integration of the logic modules using three different
methods for secure integration in a single logic program –
“combined module”:
• An “obfuscator” (Figure 3A), and/or
• A “program encrypter” (Figure 3B), and/or
• A “hidden program generator” (Figure 3C).
The first method of software obfuscation (Figure 3A),
relies solely on software methods. It involves
transforming the module into a functionally equivalent but
hard to understand module. Obfuscation methods have
been studied and even automated [1][3][4]. They rely on
transforming the code in various ways so that the result is
a scrambled version of the original code. While, it is
understood that with a lot of reverse engineering efforts,
one can de-obfuscate a program, the technology is such
that the reverse engineer needs a lot of effort. Since the
modules can be obfuscated every so often (i.e.,
dynamically) and with new signature parameters, the task
of reverse engineering the module can be made hard and
non cost-effective. Obfuscation methods, also known as
“tamper proof software” have been studied in recent years
in various software technologies [2], and several
companies offer such services. Let us review some aspect
of obfuscation methods.
3.2.1 Obfuscation
A program is transformed using an automated method that
is formally defined as:
Obfuscation: an obfuscator O is a probabilistic
"compiler" that takes as input a program (or circuit) P
and produces a new program O(P) that has the same
functionality as P, yet is "unintelligible" in some sense.
Most of the obfuscator applications are based on an
interpretation of the "unintelligibility" condition in
obfuscation as meaning that O(P) is a “virtual black box.”
Code obfuscation is similar to code optimization,
however, obfuscation maximizes obscurity while
minimizing execution time, whereas optimization only
minimizes execution time.
3.2.2 Dynamic modification of obfuscated

codes and parameters
Currently, obfuscated codes are used primarily for content
protection programs and programs that manage content
locally, and not for interlocking two programs securely for
remote signaling (e.g., by using secure sequence of n-bit
tags). A novelty of TrustedFlow™ protocol is the use of
obfuscation (or other software-hiding methods) to
“interlock”:
1. The known performance characteristics of the packet

generation portion of the software that affects the
entire network and servers, together with

2. The unknown unpredictable individualized sequence
of n-bit tag (pseudo-random) generation software
used for secure signaling.

This in turn enables the codification and verification of
various other aspects (such as, type of check, performance
parameters, etc.) by using dynamic modification of the

pseudo-random generator in the TFG, as was shown in
Figure 1, in order to dynamically manage and refresh the
obfuscated part of TFG. This serves to increase hardness
of de-obfuscation and making de-obfuscation functionally
infeasible.
3.2.3 Other hiding methods
There are other possible methods for program hiding. The
second method of program encrypter (see Figure 3B),
relies on having an end-to-end secure authenticate channel
between the program generator and the place where the
program is to be run. It may be that the program is then
decrypted and executed in a “tamper proof” part of the
architecture. A particularly attractive method for
implementing this may be the TCPA (Trusted Computing
Platform Alliance) architecture [2], led by major IT
companies. The architecture enables portions of the
software to be executed without the user controlling it.
Originally, it may have been motivated by Digital Right
Management of content distribution, but it can be used for
execution of software that we do not want to allow the
local user an ability to alter.
The third method (Figure 3C) may embed the combined
module as is in a co-processor that is protected or hide
part of the execution is protected smart cards. This method
may assume that the function of the functional module
may be or should be performed at a remote location or a
separate card (e.g. a network controller).
The result of the three methods is the formation of
“combined modules”, which make it practically
impossible to learn how the unpredictable idiosyncratic
signature is generated. Note again that the objective is not
necessarily to hide the original computing functionality
(or plain program), but rather to hide a “secret signature
generating function” within the original computing
functionality.
The system for a secure “combined module” integrates the
operational component and the signature component into a
virtually single logic module. This module hides certain
rules of execution, thus providing that the mechanism is
assured to interlock the idiosyncratic signature generation
and the rules of execution. In particular, the system is run
wherein one of the software logic modules provides rules
of transmission for accessing the network. These rules of
transmission may compute certain limitations and
conditions on the operation of the protocol: performance
characteristics, access characteristics, transmission
limitations, transmission rates, window sizes, port
numbers, IP addresses, network addresses, quotas,
renewable quotas, packet structure limitations, schedule.
Indeed, it is possible to combine rules as well to assure
that a number of execution rules are being followed for
various transmissions distributed computation operations.
The result is that a mere check of signature validity
assures that the operational module with the constraints
and limitation was followed by the software. Thus, many
assurances are encompassed within the validity of the
signature, due to the notion of “interlocked execution.”

4 Trusted TCP: an Example of
TrustedFlow™ Deployment

This section describes a sample deployment of the
TrustedFlow™ protocol in data networks. In particular,
the paper provides a high level description of how to
perform secure interlocking of a TFG in the transmission
control protocol (TCP) software that is responsible for
flow and congestion control over the Internet.
The TrustedFlow™ protocol has not been designed with
this specific application in mind; hence, the content of this
section not intended as a rationale and motivation for the
TrustedFlow™ protocol, but rather as an example of its
deployment. The reason for addressing secure interlocking
of TCP as a TrustedFlow™ application is twofold. First,
being the TCP code publicly available and its functional
specification well known, it is suitable to be used as a case
study. Second, as explained in Section 4.1 below,
modified TCP software can cause unfair sharing of
network resources — if deployed on a small scale — or
even a global failure of the Internet — if widely deployed.

4.1 TCP Principles of Operation and
Motivation for Secure Interlocking

TCP includes a number of operational rules for error,
flow, and congestion control. A sliding window
mechanism limits the amount of data sent into the network
before receiving confirmation of its reception (a.k.a.
acknowledgment). TCP congestion control aims at
recovering from congestion, or avoiding it in the first
place, by reducing the transmission rate. The sender uses
segment loss events to infer congestion in any routers on
the path of its TCP connection. A segment loss event is
identified by either the expiration of the time-out
associated to the lost segment, or a duplicated
acknowledgement received for a previous segment. The
transmission rate is changed by modifying the size of a
transmission window according to an algorithm called
AIMD (additive increase, multiplicative decrease). This
algorithm aims at trying to achieve maximum utilization
of network resources by slowly increasing — additive
increase — the window size during periods of low
congestion. As congestion is detected, the sender is
supposed to react immediately by significantly reducing
its transmission rate, i.e., the size of its transmission
window — multiplicative decrease.
If all TCP senders using a network resource, such as a
link, behave according to the defined TCP flow and
congestion control algorithm, they all share (more or less
equally) the network resource. On the contrary, if a TCP
source is misbehaving — for example, not reducing its
transmission window size — it could grab a large fraction
of the bandwidth and shut up well-behaving ones. Thus,
misbehaving TCP senders can compromise the network
performance as perceived by the users deploying well-
behaving TCP code.
The gravity of the situation arising by a large number of
such misbehaving TCP senders can be fully understood by
looking back at the motivations for the above mentioned

congestion control algorithms. The original TCP
specification did not include such features, i.e., the
protocol operation was based on a fixed size congestion
window. This was the cause of the severe and irreversible
congestion that the Arpanet experienced in October 1986:
the average throughput on the 32 kb/s links constituting
the network was down to 40 b/s. Heavy traffic brought to
the congestion of links, buffers feeding them overflowed,
and packets were discarded. Consequently, TCP senders,
not receiving acknowledgements for lost transmitted
packets, timed-out and retransmitted a whole window-
worth of packets (including some possibly received out-
of-order from their destination), thus perpetrating the
congestion. The only way out of this congested state had
been closing a large number of TCP connections by
terminating the applications that opened them.

The introduction of congestion control based on varying
TCP’s transmission window size has eliminated the risk of
such an irreversible congestion state. However, the
conditions that triggered the irreversible congestion
experienced in 1986 would be reproduced if a very large
number of users deployed TCP code modified to achieve
larger throughput by avoiding properly reducing the
transmission window. Since the consequence of such an
irreversible congestion is the impossibility of
communicating through the whole Internet, such a
modified TCP code could be distributed as a way of
carrying on as a global, distributed denial of service
attack. Achieving widespread deployment of the modified
code could not even be very difficult: for example, the
modified TCP code for the main operating systems could
be made publicly available for download and advertised as
yet another simple fix to improve the performance of file
transfers and web page downloads (many such “fixes” are
currently being offered). This would trigger a time bomb
that would approach its detonation as more and more
Internet users install the “improved” TCP code. The time
of the “Internet explosion” would be unpredictable and the
phenomenon completely unexpected.
Interlocking a TFG with the TCP software allows the
network to verify that a TCP sender is executing a proper
TCP implementation and hence it is well behaving. A
Trusted Tag Checker (TTC) at the network boundary, as
shown in Figure 1, can identify TCP segments not
generated by Trusted TCP Code — that plays the role of
the TFG in the architecture depicted in Figure 1 — and
apply to them a pre-defined handling policy, such as
discarding the frame or sending it with lower priority.

4.2 Realization of Secure Interlocking for
Trusted TCP

This section describes a possible TrustedFlow™ protocol
realization that allows the network to verify the proper
operation of a TCP implementation, which is labeled
Trusted TCP Code. Figure 4 is a functional block diagram
of the high layers of a TCP/IP protocol stack used by
various applications to transmit and receive data units to
and from a multiple other applications through the socket
interface layer.

Trusted TCP Code
with defined rules of transmission

Real-time
Clock

Pseudo
Random Tag

Generator

Socket Layer

First
Application

Second
Application

IP Protocol Layer

Obfuscated code

TCP_Received

Clock_Tick

IP_Received IP_Send

TCP_Send

IP

Figure 4: Example: Trusted TCP layer (a TFG implementation)

The Trusted TCP Code includes a pseudo-random
generator of security information — n-bit tags — to be
associated to the TCP segments being transmitted. The
security tag associated to a TCP segment have to objective
of certifying that the TCP segment was generated by
Trusted TCP Code, i.e., that the TCP transmitter that
originated a TCP segment operates in compliance with the
rules of transmission — i.e., flow and congestion control
— specified by a given TCP standard (e.g., TCP Reno).
Figure 5 describes the operations performed by the
Trusted TCP Code for the transmission of a TCP segment.
Besides an n-bit tag, a Security Tag Serial Number (STSN)
is associated to each TCP segment prepared for
transmission. The n-bit tag is obtained from a pre-
computed pseudo-random bit sequence that is known to
both, and only, the TFG and the TTC; the STSN
identifyes the n-bit tag position within the sequence. The
n-bit tag and its STSN are transmitted in the option field
within the TCP header. The STSN is essential for a TTC
to locate within the pseudo-random bit sequence the n-bit
tag contained in inspected TCP segments that were
received out of order or after a lost TCP segment.

Start

YUnsent data
in TCP

window?

Prepare TCP segment

End

N
Enough
bytes to
generate

segment?

N

Compute n-bit tag

Attach n-bit tag and
STSN to TCP segment

Send TCP segment
Send TCP segment

STSN: Security Tag Serial Number

Y

Add ACK information

Figure 5: Transmission of a TCP segment

The TTC embedded, for example, in a network appliance
at the boundary of a network domain, checks that the n-bit
tag associated to each TCP segment has been properly
generated, i.e., that the TCP segments were sent by
Trusted TCP Code. If the check on the tag reveals that a
TCP segment was not properly generated, it is discarded
or mapped to a lower priority service through the network
domain. In the former case, TCP senders running non
trusted code cannot at all use the network services. In the
latter case, while non trusted TCP code can transfer data

through the network domain, it cannot negatively affect
the performance achieved by Trusted TCP Code. In fact,
in case of congestion, TCP segments generated by non
trusted senders are discarded with higher probability than
TCP segments generated by Trusted TCP Code.
The TrustedFlow™ protocol assures proper operation of a
TCP sender — and, in general, of the sender of a data
stream — not the authenticity or privacy of transmitted
data. For applications that require authentication and
privacy of transmitted data, a proper authentication and/or
privacy protocol, such as IPSec, TSL or SSL, can be used
to complement TrustedFlow’s capabilities.

5 Conclusions: Creating Trusted System
Environment

TrustedFlow™ is a general software tool with wide
commercial and military applications. In essence, the
TrustedFlow™ protocol creates a combined trusted
computing/networking environment by using an
idiosyncratic signature — generated by a trusted flow
generator (TFG) component operating in an untrusted
environment — that is checked by a trusted tag checker
(TTC) component operating in a trusted environment
(e.g., firewall). TrustedFlow™ complements trusted
computing platforms by enabling remote verification that
the right software is executed; it constructs a “remote
trust” mechanism.
This paper presents the basic principles of the
TrustedFlow™, its synergies with other existing network
security approaches, and an example of its deployment to
authenticate the execution of the transmission control
protocol (TCP) code. The TrustedFlow™ protocol has not
been designed with this specific application in mind;
authentication of TCP software is presented as an easy to
understand and meaningful example of its application, not
with the aim of providing a rationale and motivation.
Rather, being a basic tool to ensure trusted code
execution, the TrustedFlow™ protocol can be used in
various contexts and enables a plethora of new
applications and services.
In comparison with other network and computer security
solutions, the TrustedFlow™ protocol has a lower
complexity (no need for special hardware), and thus, is
less expensive and more scalable. The TrustedFlow™
protocol can be used in various computing and networking
scenarios, either by itself or together with other existing
security solutions. A prototype of the TrustedFlow™
architecture sponsored by Microsoft Research is under
development at Torino Polytechnic.

References
[1] C. Collberg, C. Thomborson and D. Low, “Watermarking, Tamper-

Proofing, and Obfuscation-- Tools for Software Protection,” IEEE
Transactions on Software Engineering, vol. 28, no. 8, 2002.

[2] S. Pearson, B. Balacheff, D. Plaquin, and G. Proudler, “Trusted
Computing Platforms: TCPA Technology in Context,” Prentice Hall

[3] E. Valdez and M. Yung, “Software DisEngineering: Program Hiding
Architecture and Experiments,” Information Hiding 1999.

[4] E. Valdez and M. Yung, “SISSECT: DIStribution for SECurity
Tool,” ISC 2001, pages 125-143, 2001.

	Introduction
	Related Work
	Synergy: Cryptographic Authentication
	Synergy with Biometric Signature
	Synergy with trusted computing

	TrustedFlow™ Protocol Principles
	Basic Principles
	Program Hiding with Secure Interlocking
	Obfuscation
	Dynamic modification of obfuscated codes and parameters
	Other hiding methods

	Trusted TCP: an Example of TrustedFlow™ Deployment
	TCP Principles of Operation and Motivation for Secure Interlocking
	Realization of Secure Interlocking for Trusted TCP

	Conclusions: Creating Trusted System Environment
	References

