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Abstract 

Assuring that a given code is faithfully executed with defined parameters and constraints on an 
un-trusted host is an open problem, which is especially important in the context of computing over 
communications networks. This work evaluates applicability of Aspect-Oriented Programming 
(AOP) to the problem of remotely authenticating code during execution, which aims at assuring 
that the software is not maliciously tampered prior to and during execution. A flow of idiosyncratic 
signatures is continuously generated and associated to data transmitted by a function that is 
encapsulated in an aspect and whose execution is subordinated to the proper execution of the 
software being authenticated. The flow of signatures is validated by a remote component. 

1. Introduction 

Among the very broad range of security issues, this paper investigates how to apply Aspect 
Oriented Software Development (AOSD) techniques to implement software-tampering detection 
in applications running on an un-trusted host. There are many situations in which it is desirable to 
protect a piece of software from malicious tampering once it gets distributed to a user community 
(examples include time-limited evaluation copies of software, password-protected access to 
unencrypted software, controlled playback of copyright protected material, e-voting and e-
commerce systems) or even when running on a server (e.g., systems handling critical information 
and financial transactions). 
In general, software, especially in the context of data networks, suffers from some inherent 
problems. These include modifications by an either malicious or inadvertent user, malware 
distribution (e.g., viruses and “Trojan horses”), and the use of malicious software remotely for 
penetration, intrusion, denial-of-service (DoS), and distributed DoS (DDoS). For example, a rogue 
user may manipulate the code of a given protocol (such as TCP) and gain an unfair advantage in 
using network bandwidth. 
Tamper resistance is the set of methodologies for protecting software or hardware from 
unauthorized modification, distribution, and misuse [9]. One important technique is integrity 
checking and in particular self-checking, in which a program, while running, checks itself to verify 
that it has not been modified. We distinguish between static self-checking, in which the program 
checks its integrity only once, during start-up, and dynamic self-checking, in which the program 
repeatedly verifies its integrity at run time. Self-checking alone is not sufficient to robustly protect 
software from tampering since the self-checking function itself can be removed or inhibited.  
The level of protection from tampering can be improved by using techniques that slow down 
reverse engineering, such as customization and obfuscation, techniques that prevent using 
debuggers and emulators, and methods for marking or identifying code, such as watermarking. 
These techniques reinforce each other, but they do not make it bulletproof [8].  
We think that whichever self-checking technique, bundled within the application, can be identified 
and disabled by an attacker with enough knowledge, time, and reverse engineering tools. We 
noticed that current self-checking techniques rely on static code checkers whose position is hidden 
in the application and whose behavior is obfuscated or complex to understand. 
Hence, the presented solution extends the power of code checkers in two ways: it adds remote 
verification that self-checking has been performed and continuous replacement of (critical parts of) 
the self-checking code. 
Software tampering detection is indeed a crosscutting concern, because of its pervasive nature with 
regard to the business logic in an application. Aspect Oriented Programming (AOP), being an 
emerging technology promoting advanced separation of concerns, can be used to ease the design 
of different self-checking techniques and, in our approach, it is used to modularize self-checking 
code in an aspect whose behavior can be continuously updated with mobile code. 
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This paper describes the design and implementation of such a solution and its dynamic self-
checking mechanism that can raise the level of tamper-resistance protection against an adversary 
with static analysis tools and knowledge of our algorithm and most details of our implementation.  
We begin in Section 2 with a brief discussion of related work. In Section 3 we address our design 
objectives we used to create techniques for remote authentication of code execution. Section 4 
presents an overview of the proposed self-checking mechanism based on AOP, and possible 
threats are detailed in section 5. Finally, Section 6 concludes with a brief discussion of directions 
for future work. 

2. Related Work 

There has been a significant amount of work on the problem of executing un-trusted code on a 
trusted host computer [10, 11]. The field of tamper resistance is the dual problem: running trusted 
code on an un-trusted host. Although of considerable practical value, there has been little work 
done on this problem. Most of the work reported in the literature is ad hoc. It is not clear that any 
solution exist that has provable security guarantees and with measurable effectiveness. We present 
a list of some important work related to self-checking technology: for more details see [9, 2]. 
Obfuscation attempts to thwart reverse engineering by making it hard to understand the behavior 
of a program through static or dynamic analysis. Obfuscation techniques tend to be ad hoc, based 
on ideas about human behavior or methods aimed to defeat automated static or dynamic analysis. 
Collberg, et al. [2] presented classes of transformations to a binary that attempt to confuse static 
analysis of the control flow graph of a program. Wang, et al. [12] also proposed transformations to 
make it hard to determine the control flow graph of a program by obscuring the destination of 
branch targets and making the target of branches data-dependent. 
Customization takes one copy of a program and creates many very different versions. Distributing 
many different versions of a program stops widespread damage from a security break since 
published patches to break one version of an executable might not apply to other customized 
versions; then each instantiation of a protected program may be different [13].  
Software watermarking, which allows tracking of misused program copies, have been proposed in 
different ways: Collberg and Thomborson [14] provide a survey of research and commercial 
methods: they make the distinction between software watermarking methods that can be read from 
an image of a program and those that can be read from a running program.   
Self-checking is an essential element in an effective tamper-resistance strategy. Self-checking 
detects changes in the program and invokes an appropriate response if change is detected. This 
prevents both misuse and repetitive experiments for reverse engineering or other malicious attacks. 
Aucsmith [13] presents a self-checking technology in which embedded code segments verify the 
integrity of a software program as the program is running. These embedded code segments check 
that a running program has not been altered, even by one bit.  
On the other side, network security in all its aspects has become more crucial in recent years, in 
terms of protecting data travelling through the network and authenticating communicating entities 
(see for example [5, 6, 7]). However, no work has been done for assuring the integrity of the 
software implementing the communicating entities and generating the data. The presented work 
aims at addressing this issue, trying to use aspect-oriented programming and dynamic code 
downloading to enforce code-checkers relying on network security. 

3. Remote verification: the TrustedFlow™ Protocol 

The TrustedFlow protocol  [15], as shown in Figure 1, is based on a Trusted Flow Generator (TFG) 
in the entrusted code of the program deployed on an un-trusted host, and a Trusted Tag Checker 
(TTC) function on a trusted host, i.e. another computer or as part of some network interface (e.g., 
firewall, gateway), acting as entrusting entity. The TFG is a module that generates a pseudo-
random sequence of n-bit tags (idiosyncratic signature) depending on a random seed and possibly 
on the information to be transmitted.  
The n-bit tags are interleaved in the sequence of messages (e.g., inside data packet headers) that 
are sent through the network. At the destination or at an intermediate node within the network the 
validity of the pseudo-random sequence of n-bit tags is checked and verified by the TTC function. 
A valid pseudo-random sequence of n-bit tags verifies that the sending computer has used the 
appropriate software (programs and parameters). Consequently, the TTC function accepts and/or 
forwards only data packets from well-behaved sources.  
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It is important that the algorithm used to generate the idiosyncratic signature does not require a 
strong synchronization between TTC and the TFG. One possible idea currently under investigation 
is the use of a block cipher in counter mode with the inclusion the value of the counter among the 
data transmitted between the TTC and the TFG. 
Moreover, a MAC (Message Authentication Code) of the data packet including the current 
idiosyncratic signature can be generated to protect against the tampering with the data associated 
to a valid signature. 

Figure 1: TrustedFlow architecture 

TrustedFlow is based on the following two principles. 
- Interlocking – original executable software modules (original function) are combined 

together with the idiosyncratic (pseudo-random) signature generator (which is used to 
generate an unpredictable flow of tags) in such a way that proper execution of interlocked 
code in necessary to proper functioning of the generator.  

- Program Hiding – the combined module is prepared in such a way as to ensure that 
reverse engineering is difficult enough so that it becomes functionally infeasible. Periodic 
replacement of (parts of) the combined module can be used to cope with the limited 
robustness of program hiding. 

This work shows how AOP can be used to realize self-checking — on which interlocking is based 
– and periodic replacement — on which hiding is based. Approaches do exist that hide some sort 
of self-checker in the application running on an un-trusted host to make it tamper-proof. Such self-
checking module is subject to reverse engineering attacks. Our solution is not vulnerable to such 
attacks thanks to the following two additional features 

1. Both the self-checking algorithm and the data used by this algorithm to verify software 
integrity are variants. Once these features are variants and modularized with AOP they 
can become dynamically variable in time. Therefore, the TTC can periodically release 
new version of the TFG, making former versions invalid. Our approach is based on the 
assumption that even if attacker were able to understand and crack the application, the 
time needed to pursue this goal would be anyway longer than or even just comparable to 
the validity of the attacked TFG code. 

2. The TTC, which is running in a trusted environment, makes sure that the self-checking 
module is not bypassed or isolated by invalidating data that has not been associated to 
valid tags as generated by the self-checking module. 

The goal of the proposed methodology is to enable detection of the following attacks: 
- Modification of values of fields and constants outside a specified range. 
- Execution of tampered versions of software for malicious goals. 
- Substitution of relevant operations in the application to modify application behavior. 
- Replacement of code with a cracked version for malicious goals. 
- Bypass of code parts verifying licenses or billing. 

The proposed architecture is depicted in Figure 2.  
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Figure 2. The TrustedFlow approach  

The TFG is executed within a mobile module that is not bundled within the application but it is 
downloaded at runtime to make reverse-engineering attacks more difficult. Obfuscation techniques 
thwart fast reverse-engineering attacks. . Even in case of de-compilation of the mobile module 
using ad-hoc packet sniffers and/or memory dump, the periodic substitution of the mobile code 
and its own checking algorithms, limits the validity of manual reverse-engineering, as more as the 
change period become smaller. 
The realization of the proposed system can be divided in four sub-problems: 

1.  network level: defining message exchanges and a header format suitable to carry tags 
and supplementary information (e.g., sequence number and tag flow identifier) together 
with data generated by the entrusted module necessary for the TTC to be able to verify 
tags and periodically replace the mobile module.. 

2. security level: defining cryptographic aspects of tag calculation, starting from an initial 
seed hardwired in the mobile module. 

3. tag interlocking with code execution: the choice of input data for tag calculation must be 
driven by two goals: verifying that sensible data are not tampered, and verifying that 
execution sequence is compliant with the original specification used by TTC to perform 
validation 

4. mobility: identifying techniques for dynamically replacing and installing the mobile 
module ensuring proper interaction with the entrusted code. 

4. Tampering detection with AOP and mobile code 

The presented work focuses on the mobility sub-problem and this section analyses possible 
applications of AOP to the implementation of the TFG. We analyzed the mobile code issue in the 
Java environment and identified three different approaches relying on these candidate 
technologies: software agents, static AOP and dynamic class-loading, dynamic AOP platforms.  
With static AOP we means tools like AspectJ [17], which weaves aspects at compile-time, while 
dynamic AOP platforms are able to weave and unweave aspects at run-time. 
Agent platforms allow mobile code to be executed on a remote un-trusted host running an 
application: the agent runs in a different process and interacts with the application through a well- 
defined interface dependent on the chosen agent platform. After a preliminary analysis we believe 
that, unlike AOP techniques, agents cannot have full control of application code.  
Static AOP tools can be coupled with dynamic class loading to obtain dynamic insertion of code 
extensions in the application running in an un-trusted host.  
In this case AOP, an application can be woven with a set of aspects that intercept all relevant 
method invocations and field accesses: the advice code of each aspect can get actual parameters 
and field values using AOP features and these data can be subsequently used to check some 
validity constraints and eventually disable tag generation if an unexpected value is obtained. 
AOP can thus insert “hooks” in relevant parts of application code that call the advice method of 
different aspects; at runtime the set of relevant data (e.g. fields values, actual parameters of an 
invoked method, application class definitions determined with reflection) are available to the 
advice code. Among this set of data, the mobile code can select a subset to perform validity 
checking and these data can be used as input for the tag generation algorithm, in conjunction with 
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a key within the mobile module, i.e. the dynamically inserted code that is periodically renewed by 
the entrusting entity. 
Moreover if different aspects and different types of mobile code are used they can validate the 
application and they may validate each other.  
Using dynamic AOP platforms [16] maintains all the advantages of the static AOP approach, but 
there is no more presence of “hooks” in the application code (possible starting point for a 
“replacement” attack), because these hooks are determined at runtime by the platform, depending 
on pointcut definitions included in the dynamically downloaded aspect. Also, dynamic AOP 
enables to download and withdraw a set of different aspects, each one making a specific check on 
application code, which thwarts attackers. 
Using a dynamic AOP platform or dynamic code downloading means that the prototype relies on 
an external, un-trusted support for mobile code installment and execution. Reliance on such un-
trusted support could make the whole system vulnerable, for a limited time.  
However, we do not consider this being a problem for our purposes since our aim is to 
demonstrate that our approach can be immune to this problem. In fact if the attacker is able to 
modify the AOP platform, in order to disable mobile code download (and the TFG module here 
contained), then tags cannot be generated and TFC (in the Entrusting Entity) will discover 
tampering attempt and react. In future, when dynamic AOP platform will become more secure, 
then our approach could be improved.  
As the Java platform does not allow application access to the code segment, code verification 
techniques cannot be applied. If the application is implemented in C++, the aspect’s advice code 
can calculate a hash of the code segment at run-time. The mechanism could detect the change of a 
single bit in any non-modifiable part of the program, as the program is running and soon after the 
change occurs. This helps to detect an attack in which the program is modified temporarily and 
then restored after unspecified behavior occurs. Our approach modularizes self-checking code in 
aspects that can be independently replaced or modified, making future experimentation and 
enhancements easier, and making extensions to other executable formats easier.  
Other benefits of a Java based solution are hardware platform independence and easy integration 
with other tamper-resistance methods techniques like customization: different version of the 
application and related aspects can be easily generated acting on aspect pointcuts definitions. The 
power of pointcuts composition rules in AOP is suitable for a flexible management and 
distribution of self-checking code in a large code base. 

5. Possible threats 

The fundamental purpose of a dynamic self-checking mechanism is to detect any modification to a 
program as it is running, and upon detection to trigger an appropriate response. In this approach 
such response involves inhibiting the generation of the idiosyncratic signature. Using the 
TrustedFlow protocol any software tampering on the un-trusted host should be remotely detected 
by the TTC, whose response is blocking any further network communication coming from the 
suspected host. This section discusses possible threats to the proposed approach and its robustness 
to such threats. 
A possible attack is to identify the mobile module using packet sniffers and/or memory dump: 
once identified and decompiled the mobile module the attacker can understand the TFG behavior 
and disable checking activities, but sending the correct information to the TTC. It is unlikely that 
such a complex attack, that is likely to require discovering the behavior of all the aspects, can be 
successfully completed before their validity expires.  
The two general attacks on a software self-checking mechanism are discovery and disablement. 
Discovery methods and our approach for preventing or thwarting these methods, follow. 
Among discovery attacks, static inspection made with automated inspection tools (by a program) 
can be defeated by our approach, by the dynamic change of the TFG encapsulated in the mobile 
module. 
Off-the-shelf dynamic analysis tools, such as debuggers and profilers, pose a threat to our self-
checking approach, in particular when a dynamic AOP platform is used. Moreover when static 
AOP with dynamic class loading is used, the aspect’s advice code invocations are identifiable in 
the code.  
Obfuscation of the TFG and the limited time validity of its algorithm can limit the effectiveness of 
the attack. The attack is fully voided if the time needed to succeed is longer than the current TFG 
time validity. 
The self-checking mechanism consists of a number of aspects, each testing a small set of code 
structure and properties. An attacker, having discovered one such aspect, could look for others by 
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searching for similar code sequences. Customization of aspect code can help, so that generalizing 
from one to others is difficult: e.g. multiple aspects, each one performing a different check 
(computing a different part of the seed from a different subset of attribute values or code 
structure), could implement a basic customization technique.  
Disablement attacks can be defeated by the remote validation made by the TFC of the signed 
packets coming from the current TFG in the application. 
One possible disabling attack is to modify one or more aspects so that they fail to signal a 
modification. If no data are sent by the TFG, the TTC deduces that a tampering has been carried 
out, and network connectivity of the application is blocked.    
A possible improvement may be based on an overlapping coverage, so that each aspect is validated 
by several others. Disabling one or more of the aspect advices by modifying them will produce 
detection of these changes by the unmodified aspect advices. All or almost all of the aspects must 
be disabled for this kind of attack to succeed.  

6. Conclusions and Future Work 

We have presented how the combination of a dynamic self-checking mechanism with the 
generation and remote checking of an idiosyncratic signature allows protecting software running in 
a remote, potentially hostile environment. We are currently working on a prototype 
implementation and a more detailed analysis of possible threats is needed.  
In future, main effort will be on enhancing prototype development and extensive testing on 
different case studies.  
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