
 1

Time-Driven Priority Router Implementation:
Analysis and Experiments

Mario Baldi, Member, IEEE, and Guido Marchetto, Member, IEEE

Abstract—Low complexity solutions to provide deterministic quality over packet switched networks while achieving high
resource utilization have been an open research issue for many years. Service differentiation combined with resource
overprovisioning has been considered an acceptable compromise and widely deployed given that the amount of traffic requiring
quality guarantees has been limited. This approach is not viable, though, as new bandwidth hungry applications, such as video
on demand, telepresence, and virtual reality, populate networks invalidating the rationale that made it acceptable so far. Time-
driven priority represents a potentially interesting solution. However, the fact that the network operation is based on a time
reference shared by all nodes raises concerns on the complexity of the nodes, from the point of view of both their hardware and
software architecture. This work analyzes the implications that the timing requirements of time-driven priority have on network
nodes and shows how proper operation can be ensured even when system components introduce timing uncertainties.
Experimental results on a time-driven priority router implementation based on a personal computer both validate the analysis
and demonstrate the feasibility of the technology even on an architecture that is not designed for operating under timing
constraints.

Index Terms—Architecture related performance, experiments on a network testbed, packet scheduling, time-driven priority.

——————————  ——————————

1 INTRODUCTION: MOTIVATION AND RELATED WORK

significant effort has been devoted during the last
two decades to the study of effective techniques for
the provision of Quality of Service (QoS) over the

Internet. Several frameworks and switch architectures
were proposed, with the aim of meeting the increasing
QoS demand coming from real-time applications, such as
voice over IP and multimedia streaming.

The Integrated Service (IntServ) model [1] was firstly
proposed. IntServ has the potential to provide absolute
QoS guarantees to single packet flows in term of end-to-
end delay, jitter, and packet loss. However, it has proven
not to scale due to the high complexity and processing
requirements associated with packet scheduling algo-
rithms, such as packet-by-packet generalized processor
sharing (PGPS) [2], a.k.a. weighted fair queuing (WFQ),
combined with the need for their per-flow deployment.
Moreover, PGPS and other similar well known schedul-
ing algorithms [3][4], such as, class based queuing,
weighted round robin and others, cannot combine optim-
al delay and resource utilization efficiently (see detailed
discussion in [5]). A survey of existing scheduling algo-
rithms for QoS provision, including a discussion of their
complexity and realization issues is available in [6].

Due to all of the above, IntServ has not gained a wide
acceptance and the second half of 1990s was devoted to
the definition of more scalable QoS solutions that could
be deployed in the Internet. This effort essentially re-

sulted in the Differentiated Services (DiffServ) model [7],
which basically consists in mapping traffic flows to few
service classes at the edge of the network and then dis-
criminating among them in the network core by provid-
ing service differentiation. DiffServ overcame the scalabil-
ity issues affecting IntServ, thus rapidly becoming the
standard solution (still adopted) for QoS provisioning in
packet switched networks. However, this approach can-
not withstand a significant increase in the fraction of traf-
fic with QoS requirements as it is combined with over-
provisioning of resources, i.e., it assumes that differen-
tiated traffic uses a small fraction of the network capacity.

A simple solution that relies on a more efficient utiliza-
tion of network resources is needed to allow traffic with
QoS requirements to use a large percentage of network
capacity. Time-Driven Priority (TDP) [8] with pipeline for-
warding is a packet scheduling technique that can satisfy
such requirements thanks to its unique combination of
simplicity and efficiency stemming from deploying a
global common time reference (CTR) for shaping the traffic
through the network. Pipeline forwarding provides guar-
anteed quality of service and scalability, as it has been
extensively studied both analytically and through simula-
tions [8]-[13]. In particular, [8] shows how a TDP node
combines service guarantees with a buffering complexity
comparable to the baseline FIFO algorithm, while [13]
proposes a multimedia delivery framework that demon-
strates the effectiveness of pipeline forwarding in han-
dling current multimedia applications. These results
make TDP very attractive as one of the building blocks of
the future Internet. Its simplicity ensures scalability to
high performance (multi-terabit) routers and switches. Its
efficiency, manifested in high resource utilization, guar-
antees support to a wide diffusion of bandwidth hungry

————————————————
The authors are with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, 10129 Torino, Italy (e-mail: mario.baldi@polito.it;
guido.marchetto@polito.it).

Some of the results provided in Section 6 have been previously presented at ICC
2006.

A

applications with strict QoS requirements, which promis-
es to bring new revenue to an ailing telecom and net-
working market.

Nevertheless, the fact that in TDP packet forwarding is
paced according to a time reference shared by all nodes
raises concerns at two levels: (i) the complexity of TDP
router implementation and (ii) additional deployment
constraints and requirements due to the need to realize
the CTR (sometimes inappropriately paralleled to the
need to distribute synchronization in SONET/SDH or
PDH networks). Previous work [14] addressed the reali-
zation of the CTR by analytically proving and experimen-
tally demonstrating that it can be distributed through the
network with limited complexity. On the other hand, ex-
isting literature on TDP lacks a detailed study of the im-
pact that the CTR-based operation has on the implemen-
tation complexity of a TDP router. Due to its time-driven
operation, a TDP router is intrinsically different from tra-
ditional IP routers, which naturally raises some questions.
Does the synchronous operation of TDP increase the sys-
tem complexity? Is the resulting cost per switched bit
higher than the one characterizing solutions based on the
traditional DiffServ model? Can pipeline forwarding and
TDP be implemented on simple router architectures or do
timing requirements lead to sophisticated architectures?
Because of unanswered questions of this nature, many see
the CTR as a hurdle with the potential to hinder TDP dep-
loyment by assimilating it to other technologies (see for
example ATM and SONET/SDH) whose deployment
failed to live up to original expectations due to their com-
plexity. This motivates this work that analyzes the re-
quirements that a router architecture and its synchroniza-
tion signal must satisfy to guarantee proper TDP opera-
tion and identifies the most critical implementation as-
pects. In particular, this paper focuses on the hardware
and software architecture of a TDP router and its main
contribution is to show how the device can operate prop-
erly if the synchronization inaccuracy and the response
time to the synchronization signal are upper bounded,
without any constraints on such bounds. The synchroni-
zation requirements for TDP routers were briefly ana-
lyzed in [8], where the authors state that the CTR phase
displacement at different nodes has to be smaller than the
pipeline forwarding operation time unit, which is called a
time frame (TF). However, this bound (which represents a
strict requirement on the synchronization accuracy) was
given as the maximum admitted CTR error to ensure tim-
ing consistency among nodes and considers neither the
operations that nodes have to perform on such signal nor
the inaccuracies introduced within a real router. This pa-
per extends these results by showing how TDP can prop-
erly work with any bound on both the synchronization
accuracy and the responsiveness of the router modules.

In summary, relying on analytical results, the paper
shows how a PC-based implementation of a TDP router is
feasible and meaningful. Experiments run on a testbed
realized with such routers validate the analysis. The PC-
based TDP router implementation is by itself also a signif-
icant result of this work, as it shows how TDP, thanks to
its simplicity, enables a PC-based software router to offer

service guarantees to traffic flows, notwithstanding the
general purpose nature of the platform and its inherently
unpredictable and far-from-optimized operation as a rou-
ter.

The rest of the paper is organized as follows. The oper-
ating principles of TDP are presented in Section 2, while
Section 3 describes the architecture of a TDP router and
potential criticalities in its implementation due to system
inaccuracies: determining the time at which a packet
should be forwarded and actually transmitting it at such
time. Section 4 and 5 are devoted to analyzing these criti-
calities in depth, showing under which conditions TDP
operation is not compromised. A case study is presented
in Section 6 demonstrating how TDP can be successfully
implemented on a general purpose platform, such as the
personal computer, that is well known to be unfitted for
real-time applications. Conclusions are drawn in Sec-
tion 7. A summary of the main symbols used throughout
the paper is provided in Table I.

2 TIME-DRIVEN PRIORITY
As the context of this work is a router architecture im-
plementing Time-Driven Priority (TDP), this section briefly
introduces this technology and the concept of “pipelin-
ing” the forwarding of packets across the network, on
which TDP is based. An extensive and detailed descrip-
tion of TDP and pipeline forwarding is outside the scope
of this paper and is available in the literature [8][9].

2.1 Pipeline Forwarding: Time-Driven Priority
In pipeline forwarding all packet routers utilize a basic time
period called time frame (TF). The TF duration may be
derived, for example, as a fraction of the UTC second re-
ceived from a time-distribution system such as the global
positioning system (GPS) and, in the near future, Galileo.
As shown in Fig. 1, TFs are grouped into time cycles
(TCs) and TCs are further grouped into super cycles,
which may, for example, last and be aligned to one UTC
second. The TC provides the basis for a periodic repeti-
tion of the reservation, while the super cycle offers a basis
for reservations with a period longer than a TC.

CTR from UTC
(Coordinated

Universal Time)

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 79

Super-cycle 0
with 8k Time-frames

0
beginning
of a UTC second

1
beginning
of a UTC second

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 79

Super-cycle m
with 8k Time-frames

CTR from UTC
(Coordinated

Universal Time)

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 79

Super-cycle 0
with 8k Time-frames

0
beginning
of a UTC second

1
beginning
of a UTC second

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 79

Super-cycle m
with 8k Time-frames

Fig. 1. Common time reference structure

During a resource reservation phase, TFs are partially
or totally reserved for each flow on the links along its
route. Thus, TFs can be viewed as virtual containers for
multiple packets that are switched and forwarded accord-
ing to the CTR. In particular, a synchronous virtual pipe
(SVP) is a predefined schedule for forwarding a pre-
allocated amount of bytes during one or more TFs along a
path of subsequent UTC-based routers. A signaling pro-
tocol is needed for performing resource reservation and

 3

TF scheduling, i.e., selecting the TF(s) in which packets
belonging to a given flow should be forwarded by each
router on their path. Existing standard protocols and for-
mats should be used whenever possible. Many solutions
have been proposed for the distributed scheduling in
pipeline forwarding networks [9] and the generalized
MPLS (G-MPLS) control plane provides the protocols
suitable for their implementation.

The basic pipeline forwarding operation is regulated
by two simple rules:

Rule 1. All packets that must be sent in TF t by a node
must be in its output ports' buffers at the end of TF 1t - ,
and

Rule 2. A packet p transmitted in TF t by a node i must
be transmitted in TF (1)i it d ++ by node 1i + , where

(1) 1i id + ³ is an integer constant (related to the link be-
tween nodes i and 1i +) called forwarding delay, and TF
t and TF (1)i it d ++ are referred to as the forwarding TFs
of packet p at node i and node 1i + , respectively.

It follows that packets are orderly moved along their
paths and served at well defined instants at each node.
Nodes therefore operate as they were part of a pipeline,
from which the technology’s name is derived. The value
of the forwarding delay is determined at resource-
reservation time and must be large enough to satisfy the
abovementioned Rule 1. In particular, its evaluation has
to consider all the factors affecting the time required to
move a packets from the output buffer of a node to the
output buffer of the next one, such as transmission, prop-
agation, processing, and switching delays. A different
value of forwarding delay might be applied:
 on a node basis, to take into account differences in the

processing and switching delays of various router ar-
chitectures;

 on a port basis, to take into account different transmis-
sion and propagation delays on incoming links and
processing time on input interfaces;

 on a per packet flow basis, in order to achieve higher
scheduling flexibility, i.e., at resource reservation time
the first TF with enough available resources might be
found few TFs after the earliest TF satisfying Rule 1
above.

Switch A

CTR/UTC

A B C

dAB

Switch B

Switch C

t+1 t+2 t+3t t+4 t+5t-1 t+6

D

Switch D

TFs

Fig. 2. Pipeline Forwarding operation: a possible schedule to move a
packet from node A to node D.

In the latter case, non-immediate forwarding is being per-
formed, while immediate forwarding is being realized in the
other two cases above. Fig. 2 exemplifies a possible jour-
ney of an IP packet over a pipeline forwarding network,
from a node A to a node D. Different forwarding delays
can be observed at different nodes. Without loss of gene-
rality the analysis in the remainder of this paper considers
a single value for the forwarding delay d to be used
throughout the network in order to keep notation simpler
and more readable.

On edge routers an SVP interface shapes asynchronous
traffic entering the pipeline forwarding network. Its input
module comprises mechanisms to classify incoming
packets, identify the data flow they belong to, and select
the proper TF(s) to forward them into the pipeline for-
warding network according to the reservation (i.e., SVP)
set up for the flow.

Time-driven priority (TDP) is a synchronous packet

TABLE I
SUMMARY OF FOREMOST SYMBOLS

Symbol ** Definition

ijd Forwarding delay between nodes i and j

w W£ Shaping delay at the SVP interface

fT TF duration

D Per‐TF packet jitter

J End‐to‐end jitter

iN Forwarding TF at node i

H Number of TFs per TC

t Packet transmission time

T Packet arrival time

P Propagation delay

D% One‐shot measurement of the propagation delay

p- P £ £ P Variation of the propagation delay

T T Te- E £ £ E CTR accuracy at the transmitter

0 T Tt£ £ T Overall transmission latency

0 ctr ctr
T Tt£ £ T Transmission latency component due to the CTR

tx
Tt

Transmission latency component due to

the output link and interface

ctr
T Ty e t= + Overall transmitter inaccuracy

R R Re- E £ £ E CTR accuracy at the receiver

0 R Rr£ £ R Reception latency

ĝ Guard time band duration

eT Packet processing time

0 l£ £ M Variation of the packet processing time

T FC TF capacity

C Link capacity

T FR Reserved capacity in a TF

b
nT Time at which TF n begins

b
nDT

Difference between actual and

 nominal beginning time of TF n

Buff Output buffer size

** For a given symbol, x , the plain symbol denotes the actual value of
the parameter, while x̂ denotes its nominal value, x% denotes its meas-
ured value, and x ¢ (used in Section 4.1) indicates a value of the parame-
ter specifically referred to the packet used for estimating the propagation
delay.

scheduling technique that couples pipeline forwarding
with conventional routing mechanisms to achieve high
flexibility together with guaranteed service. While sche-
duling of packet transmission is driven by time, the out-
put port is selected according to either conventional IP
destination-address-based routing, or multi-protocol label
switching (MPLS), or any other packet routing technology
of choice. While the TF in which a packet is to be for-
warded is determined according to the pipeline forward-
ing operating principles, the transmission order of pack-
ets during a TF is not predefined.

2.2 Non-pipelined Traffic
Non-pipelined (i.e., non-scheduled) IP packets — namely
packets that are not part of an SVP (e.g., IP best-effort
packets) — can be transmitted during any unused portion
of a TF, whether not reserved or reserved but currently
unused. Consequently, links can be fully utilized even if
flows with reserved resources generate fewer packets
than expected. Moreover, any service discipline can be
applied to packets being transmitted in unused portions
of TFs. For example, various traffic classes could be im-
plemented for non-pipelined packets in accordance to the
Differentiated Services (DiffServ) model.

2.3 Performance: QoS, Efficiency, and Scalability
A signaling protocol in the control plane of a pipeline
forwarding network is expected to handle the reservation
of resources during TFs, ensuring that the overall capacity
to transmit is not exceeded for each link during each TF.
Hence, as demonstrated in [9], packets belonging to flows
with reservations traverse the TDP network without con-
tending for resources. This results in pipeline forwarding
guaranteeing that pipelined traffic experiences (i)
bounded end-to-end delay, (ii) low delay jitter indepen-
dent of the number of traversed nodes, and (iii) neither
congestion nor resulting loss — i.e., the offered QoS ser-
vice is deterministic. The effectiveness of pipeline for-
warding in providing deterministic quality has been in-
vestigated in many publications [8]-[13] that demonstrate
how this technology can be profitably adopted in various
network scenarios including wired [8], wireless [10], and
even optical [11] technologies. In particular, [8] proves
that the end-to-end delay ()Del h on an SVP encompass-
ing h nodes is

1

(1)
1

ˆ()
h

i i f
i

Del h w d T
-

+
=

= + × + Då , (1)

where w W£ is the shaping delay that a packet can
experience at the SVP interface, ˆ

fT is the nominal TF du-
ration, and ˆ[0,]fTD = takes into account that the packet
can be transmitted at any time during its forwarding TF.
Since two different packets could experience

0, 0wD = » and ˆ ,fT w WD = = , respectively, the
upper bound for the end-to-end jitter is ˆ

fJ T W= + , of
which only ˆ

fT is experienced within the TDP subnet-
work independently of the number of nodes traversed,
namely, of the subnetwork diameter.

However, the overall amount of resources that can be
reserved to pipelined traffic is not known in advance and

subordinated to the successful creation of SVPs. This, in
turn, depends on the possibility of finding a schedule,
namely, not on the mere availability of transmission and
switching capacity, but also on the time (i.e., the TFs) at
which they are available. When a reservation request fails
although enough resources are available, but not during
the proper TFs, the SVP reservation is said to be blocked.
Both analytical [9] and simulation [15] studies showed
how about 90% or more of network resources can be re-
served with negligible blocking probability (i.e., at most
few percentage points). This demonstrates the superiority
of TDP in terms of efficiency over DiffServ, which instead
relies on the assumption that only a small percentage of
the link capacity is occupied by traffic with QoS require-
ments. Improved efficiency in utilization of network re-
sources directly translates in higher scalability of the
communication system as a larger amount of end-
users/end-systems/applications can be accommodated
on a network infrastructure with comparable capacity
and complexity. From another point of view, given an
expected user base and load on the network, a less po-
werful network infrastructure can be realized to accom-
modate it. Consequently, TDP can have a significant eco-
nomical impact because its support for deterministic QoS
enables high revenue applications, while its efficiency
and scalability allow costs to be contained, thus boosting
profits. One of the goals of this paper is to demonstrate
that the implementation complexity of a TDP router is not
significantly higher than the one of a router supporting
DiffServ, thus showing TDP superiority over IntServ as
well.

3 TDP ROUTER IMPLEMENTATION
In order to provide the context for the analysis of the
complexity of implementing a TDP router, an overview of
its architecture is first provided and potential criticalities
in implementing it are discussed.

3.1 Router Architecture Overview
Generically, in a packet switch data plane packets are
moved from input ports to output ports going through
three modules that perform input processing, forwarding,
and output processing. The same applies to a TDP router,
whose main architectural building blocks is schematically
depicted in Fig. 3.

Input
interfaces

Input Module
Forwarding TF

evaluation

Time
Reference

Forwarding
Module

Output interface
evaluation

Output
Module

Packet
transmission

Per-TF output
buffers

Output
interfaces

Fig. 3. TDP router architecture.

The input module comprises mechanisms to select the

 5

correct TF in which packets will be forwarded according
to the current resource reservation setup, i.e., the for-
warding TF. The evaluated forwarding TF determines the
output buffer where packets will be stored by the output
module.

The forwarding module processes packets according to
the specific network technology (e.g., IP, MPLS, etc.). A
TDP router requires no modification with respect to a
traditional packet router as far as the forwarding module
is concerned.

The output module implements a per-TF, per-output
queuing system, where packets to be forwarded during
the same TF through the same interface are buffered in
the same queue. The queue in which each packet is stored
is determined by both the input module, which decides
the forwarding TF, and the forwarding module, which
selects the output interface. Finally, the output module is
responsible for the timely transmission of all the packets
stored in the queues corresponding to the current TF in
accordance with a time reference common to all nodes of
the network.

As discussed in Section 4, the time reference may be
used also in the input module for the evaluation of the
forwarding TF. However, more effective methods, not
making use of the time reference, will be presented..

3.2 Potential Implementation Criticalities
In summary, two actions, not performed by traditional
routers, must be properly executed by a router to imple-
ment TDP:
1. Determine the forwarding TF, i.e., the TF during

which resources were allocated for transmission of a
packet — performed in the input module;

2. Transmit a packet during its forwarding TF —
 performed in the output module.
If not properly accounted for, low CTR accuracy and

non-zero latencies, hereafter collectively referred to as
system inaccuracy, result in malfunctioning, i.e., packets
not being transmitted in their forwarding TF. Conse-
quently, pipeline forwarding is disrupted and its proper-
ties cannot be enjoyed. In particular, packets possibly ex-
perience a delay longer than expected and network con-
gestion, thus running the risk of being dropped. Section 4
and Section 5 analyze each of the above listed two actions,
respectively, and show how their proper implementation
ensures correct TDP operation independently of system inac-
curacy.

4 FORWARDING TIME FRAME EVALUATION
Two approaches can be used for computing the forward-
ing TF of a packet:
1. The input module of a node adds the forwarding de-

lay to the forwarding TF at the previous node, which
has therefore to be determined in some way. Thus, if

1iN - and iN are the forwarding TFs at two subse-
quent nodes 1i - and i , respectively, and H is the
number of TFs per TC, we have

 1 (1) modi i i iN N d H- -
é ù= +ê úë û . (2)

2. The input module of each node classifies and asso-
ciates incoming packets to their forwarding TF based
on the reservation information related to their flow.
Concerning the first approach, there are various, non

mutually exclusive ways, to determine the forwarding TF
at the previous node, among which (i) precisely measur-
ing both the propagation delay and the arrival time of
each packet, (ii) attaching a time stamp to each packet,
and (iii) including a TF delimiter within the data stream.

These alternatives are analyzed in this section discuss-
ing their strengths, drawbacks, and criticalities, which led
to the implementation choices presented in Section 4.5.

4.1 Propagation Delay and Arrival Time
Measurement

In order to analyze how inaccuracies affect packet for-
warding time evaluation, we first model how the for-
warding TF is devised from a propagation delay mea-
surement and the conditions under which the outcome is
correct. Then, the various elements in the model are ex-
pressed in terms of the system inaccuracies. Packets are
time stamped as they are received by an input interface
and the TF in which they were sent out by the previous
node 1iN - is determined through the knowledge of the
propagation delay on the incoming link. In particular, if
the time origin corresponds to TF 0 of a certain TC and
super cycle1,

 1 mod
ˆi
f

T P
N H

T-

ê ú-ê ú= ê ú
ê úë û

, (3)

where T is the packet arrival time (the time elapsed from
the system time origin until the reception of the first bit of
a packet), ˆ

fT is the nominal TF duration, and P is the
time spent by the packet on the incoming link. In order
not to require any manual configuration of topology de-
pendent information, as required for effective deploy-
ment in production networks, a router must be capable of
measuring the link propagation delay P on its incoming
links. This could be done by having the sending end of
the link including a time stamp in a packet just before
transmitting it and the receiving end comparing this
timestamp with the time at which the packet is received.
However, as we have previously mentioned, an inaccura-
cy on the CTR and a non null CTR response latency can
cause a delay in transmitting packets. The same issues,
together with a non zero latency in the reception of pack-
ets, affect also packet time stamping at the receiving end
of a link — i.e., the determination of the time T at which
a packet is received. All of these inaccuracies result in an
error in the measurement of the link propagation delay
P . In order to avoid excessive burden on network nodes,
a delay measurement is not taken for each packet, but a
measurement of the link propagation delay D% is taken
either only when the link becomes operational, or period-

1 In order to avoid to unnecessarily complicate equations, the identifi-
cation of the TC within the super cycle of a given TF has been omitted.
The validity of the obtained results is not limited in any way as they
relate to the critical issue of identifying the boundaries of a TF, indepen-
dently of the TC it belongs to. The analysis presented in the paper can be
easily extended by identifying a TF as a tuple (Ni,Ci), where Ni is the TF
number within TC Ci within a super cycle.

ically through a special purpose link level protocol and
used for all subsequent packets. Consequently, the calcu-
lation of the TF in which a packet was transmitted is fur-
ther affected by the inaccuracy of the link propagation
delay measurement and is performed as

 1 mod
ˆi
f

T D
N H

T-

ê ú-ê ú= ê ú
ê úë û

%%
% , (4)

where T% is the measured arrival time of the packet.
The transmission TF is calculated correctly as long as

1 1i iN N- -= % . Considering that 1 1i iN N- -= % only if they
belong to the same TC, we do not compromise on gene-
rality by saying that the transmission TF is calculated cor-
rectly only if:

ˆ ˆ
f f

T P T D

T T

ê ú ê ú- -ê ú ê ú=ê ú ê ú
ê ú ê úë û ë û

%%
 (5)

The remainder of this section devises the conditions on
the system parameters, specifically the system inaccuracy,
under which (5) holds.

Considering the notation described in Table I, the
measured time of arrival T% for a packet is related to the
actual time of arrival T as R RT T e r= + +% , while the
delay experienced by packets over the link, possibly
changing for each packet, is ˆP P p= + . An estimate of
the link propagation delay D% must be devised in order to
apply (4). Although different and possibly more effective
approaches can be used, for the sake of this analysis the
link propagation delay is assumed to be measured as fol-
lows: the transmitting end includes in a packet its (meas-
ured) transmission time t ¢% and the receiving end calcu-
lates the difference with the packet’s (measured) time of
arrival T ¢% . In essence, D T t¢ ¢= -% % %, where the prime
indicates values specifically referred to the packet used
for estimating the propagation delay. However, the real
propagation delay P of a generic packet is given by the
difference of the actual transmission time and arrival
time, i.e., ˆP P T tp¢ ¢ ¢ ¢= + = - . Considering the sys-
tem inaccuracy at the transmitter, the value of the time
stamp in the packet can be expressed as

T Tt t e t¢ ¢ ¢ ¢= + -% . By performing some substitutions we
derive

 () R R R R T TT D T P e r e r e t p p¢ ¢ ¢ ¢ ¢- = - + + - - + - - +%% .

 (6)
For the sake of readability, the term a is defined as

follows and used in the rest of the paper:

 R R R R T Ta e r e r e t p p¢ ¢ ¢ ¢ ¢= + - - + - - + .

The conditions under which the evaluation of the for-
warding TF in a TDP router is correct are identified by the
following theorem.

Theorem 1. Sufficient and necessary condition for

1 1i iN N- -= % for any packet transmitted in TF 1iN - is that
a is an arbitrarily small time interval.

A formal proof is provided in Appendix A.1. However,
this condition is quite intuitive as it formalizes the fact
that the estimate of the packet transmission time T D- %% is
going to be close enough to the actual transmission time
()T P- if the compound effect of all inaccuracies is small

enough. Put in these terms, Theorem 1 seems trivial and
its conditions impossible to satisfy by any real system —
which would imply that pipeline forwarding cannot be
implemented. However, this stringent condition can be
relaxed by imposing a guard time band of duration ĝ at
the beginning and at the end of each TF, so that no trans-
mission shall take place during the guard time band. Dep-
loying guard time bands implies wasting a fraction of the
transmission link capacity (specifically, ˆˆ2 fg T×), hence it
is desirable that ˆˆ fg T< < . When guard time bands are
used, the following can be stated.

Theorem 2. Given a guard time band of duration ĝ , the neces-
sary and sufficient condition for 1 1i iN N- -= % for any packet
transmitted in TF 1iN - is that ˆ ˆg a g- £ < .

Theorem 2 (see Appendix A.2 for its proof) can be in-
tuitively explained by considering that a packet transmit-
ted close to the boundaries of a TF is assigned to the
wrong TF at the receiving end when its time distance
from either beginning or end of a TF is larger than the
difference between its actual time of transmission
()T P- and the measured one T D- %% . The theorem pro-
vides a way of dimensioning guard time bands based on
the knowledge of system accuracies and latencies. Alter-
natively, the duration of guard time bands can be chosen
according to a target efficiency in the usage of transmis-
sion link capacity, in which case Theorem 2 is deployed to
devise corresponding bounds on system inaccuracy that
will drive the design and engineering of network nodes.

4.2 Time Stamp and Time Frame Delimiter
Other proposed solutions to determine the forwarding TF
at the previous node — i.e., (i) attaching a time stamp to
each packet, or (ii) including a TF delimiter within the
data stream — are not subject to the strict requirements
on system accuracy expressed by the theorems in the pre-
vious section. According to these methods, the forward-
ing TF at the previous node is derived directly from spe-
cific information carried by packets, i.e., a time stamp
according to (i) and a specific packet structure/field ac-
cording to (ii). The value of 1iN - can be devised from this
information, whether explicitly or implicitly coded, in-
dependently of the system inaccuracies. This should not
give the wrong impression that by using the methods
described in this section system inaccuracies do not im-
pact the forwarding TF. In fact, as it will be discussed in
Section 4.6, they affect the minimum forwarding delay to
be applied, and consequently the overall network per-
formance in terms of end-to-end delay.

 The Real-time Transport Protocol (RTP) [16] is likely
the most widely deployed solution for carrying time
stamps. It is normally adopted in multimedia communi-
cations where the receiver uses the time stamps to recon-
struct the time profile of traffic at the sender in order to
properly reproduce media. Being an application layer
protocol, it is used in host-to-host communications where
it adds specific information (among which, a 32-bit time
stamp) between transport (UDP) header and application
data. Consequently, the adoption of RTP for the purpose
of time stamping IP packets between TDP routers would

 7

be far beyond the context for which it was designed and
require major changes to typical router operations and
deployment having them handling application layer pro-
tocol information by either tunnel IP packets through RTP
sessions between routers or change time stamps in RTP
headers of the packets being forwarded. On the other
hand, solutions relying on data-link layer protocols (e.g.,
Real-Time Ethernet [17], which allows transmitting pre-
cise time stamps within data frames) would limit TDP to
be deployed only on to specific data-link and physical
layer technologies. Hence, the time stamp should be pre-
ferably inserted at network layer to minimize the impact
on the router while ensuring independence from lower
level technology. A TF delimiter can be implemented in
various ways ranging from defining a control packet to be
inserted at the beginning of each TF, to setting a 1 bit field
in the first packet transmitted during a TF. The latter is
likable as it introduces a very limited transmission and
processing overhead, but it requires to either modify the
packet header or overload/change the semantics of (a
portion of) a field.

4.3 Packet Classification
The forwarding TF of a packet can be determined based
on the reservation previously performed for the traffic
flow it belongs to. In essence, classification rules based on
specific values of some header fields (e.g., source and/or
destination address, protocol type, etc.) enable identifying
the flow the packet belongs to and a reservation table for
the flow indicates the TFs in which packets can be trans-
mitted with deterministic service. The first upcoming TFs
listed in the table is used as the forwarding TF for the
packet.

Both hardware and software based solutions exist for
packet classification. The latter are less expensive and
more flexible (i.e., they better adapt to rule updates) than
the former, but offer a reduced throughput due to the
computational burden related to parsing and matching
transport layer information. Examples of hardware-based
classifiers are presented in [18][19], while [20][21] de-
scribe two software-based solutions.

As with the time stamp and delimiter based methods,
no absolute accuracy bounds are required, but system
inaccuracies affect the minimum forwarding delay and
consequently the overall network performance in terms of
end-to-end delay, as discussed in Section 4.6.

4.4 Comparison
Each of the presented solutions for devising the forward-
ing time frame of a packet features strengths and draw-
backs, as summarized in Table II. Here, we provide a de-
tailed comparison that leads to the implementation choic-
es described in the next subsection.

The delay measurement method, analyzed in Sec-
tion 4.1, requires high accuracy throughout the system
(ideally inaccuracy free). This results in high complexity
and costs, which make this solution impractical for dep-
loyment in commercial devices. The use of larger guard
time bands can relax these strict requirements, but at ex-
pense of resource utilization and hence of network effi-

ciency. Furthermore, the need of precisely UTC time
stamping all incoming packets involves the deployment
of special software/hardware to interface the CTR source
(e.g., a GPS receiver) with the network card. This further
increases the resulting complexity, thus also affecting the
node scalability. In fact, this solution could not be dep-
loyed in high capacity networks where a large number of
packets per second have to be handled at the interfaces.
On the positive side, the solution is resilient to packet
loss, which does not affect in any way correct pipeline
forwarding operation. No complex data structures are
required: a 16 bit integer and a 64 bit integer are sufficient
to contain the estimated propagation delay and the arriv-
al time of each packet, respectively.

Time stamp based and delimiter based methods (Sec-
tion 4.2) are similar as far as accuracy requirements, but
feature different packet loss resilience and complexity.
The former is not affected by lost packets as each packet
carries its own time stamp required to properly devise its
forwarding TF. Even if carried at the network layer to
avoid the extra burden of processing higher layer proto-
col headers as discussed in Section 4.2, transmitting, pars-
ing, and processing the 16 bit (or more) integer required
to represents the time stamp results in some overhead.
Furthermore, modifications to existing protocol headers
are required as common network layer protocols (e.g.,
IPv4, IPv6, MPLS) do not feature any field suitable for
carrying such time stamp.

TABLE II
FORWARDING TIMEFRAME EVALUATION

Solution Measurement Time stamp
TF

delimiter
Classification

Hardware

accuracy
High Low Low Low

Specific

HW/SW
Yes No No No

Scalability Low Quite high Very high Quite high

Resilience to

packet loss
Yes Yes No Yes

Data

structure
~80 bits ~16 bits Few bytes Several bytes

Protocol

modifications
No Yes No No

The TF delimiter method introduces a very limited

transmission and processing overhead (thus not com-
promising scalability) and it is not unlikely that an un-
used bit be available in existing protocol headers to be
used for this purpose (thus not requiring major modifica-
tions to the standards). For example, a non reserved co-
depoint of the DiffServ (DS) field could be used in the
header of IP packets.

The drawback of using TF delimiters is sensitivity to
the loss of the packets delimiting TFs. As part of the solu-
tion, a TF counter (possibly a 16 bit integer) for each input
interface is increased whenever a delimiter is received.
When a packet arrives, the current value of the counter is
the number of the TF during which the packet had been
transmitted by the upstream node. If one delimiter is lost,
the node is thereafter unable to correctly evaluate the

forwarding TF at the previous node and consequently to
correctly realize pipeline forwarding.

Given the memory capacity of modern computer archi-
tectures, the three methods can be considered equivalent
from the point of view of the complexity and size of the
required data structures.

Packet classification can combine the strengths of time
stamp-based and delimiter-based methods as it can pro-
vide full resilience to packet loss without requiring any
protocol header modification. The drawback of packet
classification is the more complex data structure (a per
flow resource allocation table) and extra processing re-
quired to classify packets to their respective flows and
look up the corresponding TFs in the reservation table.
However, the overhead strictly due to the identification of
the forwarding TF can be negligible. In fact, a reservation
table might anyway be needed to ensure maximum flex-
ibility in resource bookkeeping (i.e., in the control plane),
e.g., to implement non-immediate forwarding. Hence, no
additional data structure is required. On the other hand,
additional processing is required to classify packets and
look up their forwarding TF in the reservation table. This
can be limited by reserving resources to flow aggregates
rather than single flows [8][9] and using hierarchical re-
source reservation in the network core in order to en-
hance scalability [22], while still ensuring pipeline for-
warding properties and benefits to each single flow.

4.5 A Best-of-breed, Hybrid Method
Based on the comparison in the previous section, packet
classification seems to be the most attractive method for
forwarding time frame evaluation as it is robust, scalable,
and relatively simple. Here we propose a TF delineation
protocol based on the combination of a robust TF delimi-
ter and a compressed time stamp that avoids the extra
burden of packet classification in situations where only
immediate forwarding is implemented. This hybrid me-
thod combines the strengths of the two above methods,
while avoiding their drawbacks and can be realized us-
ing three bits in each packet to carry the combined delimi-
ter/compressed time stamp . One bit toggles each TF, the
other one each TC, and the third one each super cycle,
which results in an alternating-bit protocol for TF and TC
identification2. A TDP router keeps track, for each input
interface, of the number of the TF and TC during which
the last received packet was transmitted by each neigh-
boring node. This information is updated every time the
value of the bits in a packet received through an interface
is different from the previously received one. TF and TC
counter initialization is performed by setting the TF and
TC number to zero the first time the bit corresponding to
the super cycle toggles. Forwarding TF evaluation is faul-

2 Such mechanism can be seen as the transmission of a time stamp

composed of the TC and TF number where, in order to reduce the
amount of information transmitted, the numbers are compressed by
sending only the least significant bit. Alternatively, the mechanism can be
seen as delimiting the beginning of each TF by changing the value of 3
bits in a way that is tolerant to some level of loss. Notice that if a reserva-
tion period longer than a time cycle is not needed, as in many practical
deployments, two bits suffice as the identification of TC within super
cycle is not required.

ty only if all packets sent during one TF are lost, which
results in incorrect pipeline forwarding operation, hence
risk of congestion. However, disruption is temporary as
correct TF evaluation resumes at the beginning of a new
TC.

Section 6.2 details how the method was implemented
in our TDP router prototype using 8 unreserved DS (Diff-
Serv) codepoints of the DS field which does not require
any changes to the standard IP header. The hybrid me-
thod can be similarly implemented with other protocols;
for example, the EXP field of the shim header can be ana-
logously used for an MPLS-based implementation.

The hybrid method is comparable in implementation
complexity and scalability to DiffServ. In our TDP router,
the DS field must be processed for each packet to deter-
mine the forwarding TF of the packet, i.e., the output
queue in which the packet shall be stored. Similarly to
DiffServ, a few queues are required on the output inter-
face and packets are scheduled according to a simple al-
gorithm as discussed in Section 5.3. Non-immediate for-
warding requires packet classification to identify the for-
warding delay associated with the (aggregated) flow to
which a packet belongs. Another codepoint in the DS
field could be used to identify packets that require non-
immediate forwarding, so that only those are processed
by the classifier. In this case, the overall processing over-
head and scalability of the approach depends on the
amount of traffic for which non-immediate forwarding is
required. Such amount is small if non-immediate for-
warding is limited to flows that are blocked with imme-
diate forwarding. In fact, previous results discussed in
Section 2.3 show that finding a schedule for a new flow
with immediate forwarding operation is possible unless
link utilization is quite high (e.g., 80-90%).

4.6 Minimum Forwarding Delay
Whatever method is selected to determine the forwarding
TF (including the hybrid one), the evaluation of the min-
imum forwarding delay is critical to the correct operation
of the pipeline forwarding network. This value has to be
selected at reservation time (in particular, when deter-
mining the set of TFs in which capacity should be
booked) so that Rule 1 introduced in Section 2.1 is res-
pected. This section analyses how system inaccuracies
influence the minimum forwarding delay.

Let us consider a forwarding delay (1)i id - between
two subsequent nodes 1i - and i and let

ˆ , 0T e T e l l= + £ £ M denote the (variable) time
that node i spends processing the packet (i.e., to perform
header processing, routing, etc.).

Theorem 3. Necessary and sufficient condition on the forward-
ing delay (1)i id - (measured in TFs) to guarantee correct pipe-
line forwarding operation is:

(1)

ˆ ˆ
1

ˆ
R T T R

i i
f

P T e
d

T-

é ùE + E + T + + P + R + + Mê ú> +ê ú
ê úê ú

. (7)

In essence, as per Rule 1, packets must be in node i
output buffer by the TF preceding their forwarding TF,
which is expressed by the +1 term in the theorem. By the

 9

end of that TF packets must have gone through the link
between the nodes (worst case propagation delay P) and
undergone the processing at node i, (taking at most
T̂ e + M), while taking into account the maximum uncer-
tainty due to system inaccuracies. This provides a latency
figure that needs to be rounded up to an integer number
of TFs. Proof of the theorem is available in Appendix A.3.

5 PACKET TRANSMISSION

5.1 Criticalities
In principle, the transmission of packets scheduled during
a given TF must start as soon as the TF begins. In this
way, a total of ˆ ˆ

T F fC T C= × bits can be transmitted dur-
ing a TF, where ˆ

fT is the nominal TF duration (in
seconds), and C is the link capacity (in bit/sec). Poor
system accuracy possibly results in a non deterministic
variation of the duration of each TF fT , hence of the ac-
tual TF capacity that in reality is T F fC T C= × bits. The
system is not able to honor a resource reservation T FR
for a TF, thus not performing proper TDP operation,
when the following applies for at least one TF:
 ˆ

T F T F T FC R C< £ (8)

When the TDP traffic load is low, it is likely that
ˆ

T F T FR C< < for any TF3 and system inaccuracies do not
have any consequence. However, at high reserved traffic
levels, system inaccuracies might result in T F T FR C>
and possibly in TF “overflows”: the transmission of the

T FR bits scheduled during a certain TF begins late and
consequently does not end before the TF is over. Conse-
quently, some packets can remain into the node, building
up a backlog of packets, with consequent delay, jitter and
buffer overflows. Alternatively, a preemption mechanism
can be implemented so that backlogged packets are dis-
carded in order to start the following TF and avoid pena-
lizing the service provided to subsequent packets. In both
cases, the scheduling and the guaranteed service are dis-
rupted.

5.2 Discussion
The abovementioned delay in beginning the transmission
of the packets scheduled during a TF is due to both the
inaccuracy of the CTR at the transmitter Te and the TF
transmission latency Tt . It is worth noticing that Tt may
include two different components: a CTR response latency

ctr
Tt — the time between the nominal beginning of a giv-

en TF and the instant at which the system actually sche-
dules the transmission of the first packet of the TF — and
a transmission latency tx

Tt — the time between when a
packet is scheduled for transmission and the actual
transmission of the first bit of the packet. Hence,

ctr tx
T T Tt t t= + , where tx

Tt depends on the specific out-
put link technology, as well as the specific hardware and
software implementation of the network interface. For
example, the transmission of a preamble before the be-
ginning of a packet and an Inter Frame Gap after its

3 At least, this is the case if even distribution across all TFs is among the
resource allocation objectives.

transmission introduce a transmission latency in Ethernet
links. Further latencies may be introduced by the network
port controller: for example, in simple system architec-
tures an interrupt for the main processor may be generat-
ed after the transmission of each packet to notify that the
next packet can be transmitted, which requires some time
to be served. Since a non null tx

Tt prevents the usage of
part of the TF resources before the transmission of each
packet, tx

Tt must be taken into account at resource reser-
vation time. Note that this bandwidth waste is TDP-
specific: since it is related to the specific technology
adopted to interconnect routers and the implementation
of their network interfaces, it is experienced independent-
ly of the scheduling algorithm deployed.

In summary, considering tx
Tt a per-packet overhead,

the overall transmitter inaccuracy delaying transmission
at the beginning of each TF can be expressed
as: ctr

T Ty e t= + . One way to ensure correct TDP opera-
tion notwithstanding y consists in reducing the overall
amount of traffic planned to be transmitted during a TF.
In other words, poor system accuracy translates in band-
width waste that must be taken into account at reserva-
tion time (i.e., some extra bandwidth must be set aside,
like for tx

Tt) in order to avoid uncontrolled delay, jitter,
and possibly packet loss.

However, unlike for tx
Tt , the bandwidth waste related

to y can be avoided with a proper operating mode. In
particular, guaranteeing deterministic quality of service,
i.e., avoiding losses and unpredictable delay and jitter
due to network congestion, is possible by simply for-
warding all packets that match the predefined schedule
for TF iN , i.e., that have been reserved resources during
TF iN , even if this requires extending the transmission
beyond the end of TF iN . According to this new operat-
ing mode, transmission of packets scheduled during a TF

iN may end at different times on different output inter-
faces of the same node. This leads to a new definition for
the TF beginning, which is no longer specific only to a
node i , but also to a particular output interface:

Definition: Inaccuracy-tolerant pipeline forwarding op-
erating mode. The beginning of a new TF on an output
interface is identified by the latest of the following events:
1. the TF beginning signal is provided by the CTR,
2. all the packets scheduled for transmission during the

current TF becomes empty.

Thus, a generic TF (which for the sake of notation sim-
plicity we denote as n in the rest of this section) at a ge-
neric TDP node begins at a time b

nT which differs from
the nominal beginning time ˆ b

nT on an ideal (zero-latency,
zero-inaccuracy) node implementing the original pipeline
forwarding operating mode [8][9]. Furthermore, a delay
in the beginning of a TF may result in a delay in the be-
ginning of the following one (unless the amount of data
to be transmitted during the first TF is small). Necessary
condition for the delay tolerant operating mode to main-
tain the properties of the original is that the time differ-
ence between actual TF beginning and ideal TF beginning
are bounded and non-additive, i.e., an upper bound for

ˆb b b
n n nD = -T T T does exist. This is necessary to ensure

that the latest time at which a packet is forwarded at any
node, and consequently the total end-to-end delay expe-
rienced by the packet through the network, be determi-
nistically known in advance.

Theorem 4. In a TDP node deploying the inaccuracy-tolerant
pipeline forwarding operating mode where T T Te- E £ £ E
and 0 ctr ctr

T Tt£ £ T (i.e., ctr
T T Ty- E £ £ E + T), the

time difference between the actual TF beginning and ideal TF
beginning is bounded as:

 ˆ b b b ctr
n n n T T nD = - £ E + T "T T T (9)

In addition to ensuring that pipeline forwarding prop-
erties are maintained, Theorem 4 (see Appendix A.4 for a
formal proof) provides the maximum (worst case) latency
in beginning packet transmission during any TF as

ctr
T TE + T . The forwarding delay evaluation according

to (7) includes such latency.

5.3 Implementation
The inaccuracy-tolerant operating mode is implemented
by continuing retrieving packets from the buffer related
to TF n until it is empty even after the CTR signal mark-
ing the beginning of TF 1n + . Once such buffer is emp-
ty, retrieval from the buffer related to TF 1n + can start.

When pipeline forwarding is deployed within the net-
work layer of a router, the inaccuracy-tolerant operating
mode is most likely indirectly ensured by the presence of
a transmission buffer in the data-link layer protocol im-
plementation (e.g., in the Ethernet driver or network in-
terface card). In fact, packets that have to be transmitted
during TF n are retrieved by the pipeline forwarding
scheduler at the network layer and transferred to the da-
ta-link layer as soon as TF n begins. Since the time re-
quired by this operation — consisting in a pointer ad-
justment, a memory copy, or a transfer through the sys-
tem bus, depending on the router architecture — is neg-
ligible compared to the time required to transmit the
packets on the output link (i.e., the total TF duration) the
buffer related to TF n has been emptied when TF 1n +
begins. Instead, the data-link buffer is not empty when TF

1n + begins if 1n ny y+ < and it has to be dimensioned
properly in order to avoid buffer overflow with conse-
quent packet loss. From Theorem 4, the worst case to
handle is

 max min
1,ctr

n T T n Ty y += E + T = - E . (10)

Thus, if C is the output link capacity, the data-link buffer
shall be dimensioned as

() ()max min
1

ˆ ˆ 2 ctr
f n n f T TBuff T C T Cy y +

é ù é ù= + - × = + E + T ×ê ú ê úë û ë û . (11)

6 CASE STUDY: A PC-BASED IMPLEMENTATION
The guidelines presented in Section 4.5 and Section 5.3
have been used to develop a PC based TDP router [23] as
described in Section 6.1. Section 6.2 specifically describes
the implementation of the hybrid method presented in
Section 4.5. The timing inaccuracies and limitations of a
PC are analyzed in Section 6.3 as they have to be taken
into account when implementing a TDP router. Sec-

tion 6.4 reports on experiments that demonstrate that the
guidelines discussed and proven in previous sections ac-
tually do ensure correct pipeline forwarding operation
notwithstanding system inaccuracy. The router prototype
considered throughout this section is a perfect environ-
ment for validating the concepts and theorems presented
in Sections 4 and Section 5 because it is based on the gen-
eral purpose architecture of the PC, which has not been
designed for operating as a router, even less a TDP one.
In fact, the PC architecture is well known to be particular-
ly unfitted for real-time applications as control on opera-
tion timing is not one of its design objectives.

6.1 TDP Router Implementation
The developed TDP router is based on the routing soft-
ware of the FreeBSD 4.8 operating system running on a
2.4 GHz Pentium IV PC equipped with Intel PRO/1000
MT server adapter Gigabit Ethernet cards; the TDP sche-
duling algorithm is implemented in the FreeBSD kernel.

The input module determines the forwarding TF of
each TDP packet by implementing the DS field-based
solution presented in Section 4.5. Our input module im-
plementation also includes SVP interface features, which
enables the TDP router to be used at the edge of a pipe-
line forwarding network connected to nodes that do not
perform pipeline forwarding. As described in Section 2.1,
an SVP interface
 Classifies each incoming packet to identify the data

flow it belongs to, and
 Determines the TF during which the packet should be

forwarded by the output module (i.e., its forwarding
TF) based on the resource reservation of its flow.
The forwarding module performs conventional IP

routing as implemented in the FreeBSD kernel. Switching
relies on the shared (by input and output ports) PC mem-
ory and bus.

In the output module we implemented the per-TF, per-
output queuing system described in Section 3.1 and the
inaccuracy-tolerant operating mode presented in Sec-
tion 5.2. Section 6.4 shows that the output buffer of Intel
Gigabit Ethernet cards (implementing the data-link buffer
discussed in Section 5.3) satisfies the requirements to
support such operating mode as expressed by (11).

UTC is provided to our prototypal router by a Symme-
tricom GPS receiver PCI card that can generate interrupts
at a programmable rate ranging between 1 Hz (1PPS —
pulse per second) and 250 kHz (every 4 μs). Such inter-
rupts are used to pace the beginning of TFs; whenever an
interrupt occurs, the values of the current TF and TC are
updated.

6.2 Forwarding Time Frame Evaluation Method
In our prototype router, forwarding TF evaluation relies
on the hybrid method presented in Section 4.5 that com-
bines a (compressed) time stamp and TF delimiter. The
DS field in the IP header is used to carry the combined
time stamp and delimiter: bits 0x0c are set in all TDP
packets to distinguish them from those not receiving TDP
service (e.g., best-effort or differentiated service packets),
bit 0x10 is set to 1 (0) in packets transmitted during odd

 11

(even) TFs, and bits 0x20 and 0x40 toggle their value
every TC and every super cycle, respectively. Whenever
the DS codepoint of a packet received through an inter-
face is different from the previous one, the latest trans-
mission TF and TC counter kept for the upstream node is
updated. Counter initialization is performed by setting
the TF and TC number to zero the first time bit 0x40 tog-
gles. Consequently, system initialization lasts up to the
super cycle duration (typically 1 s), but happens only
when a link first becomes operational and does not re-
quire transmission of additional information. When a
node has no packets (including non-TDP packets) to
transmit on a given link, it sends sequences of padding IP
packets with proper TF and TC marking for keeping the
TF and TC counters on the router at the other end syn-
chronized4. This solution is elegant and effective since (i)
it does not require any new standard or protocol on IP
networks, (ii) introduces very-limited computational
overhead and no transmission overhead, and (iii) is resi-
lient to packet losses.

6.3 PC Architecture Inaccuracies and Limitations
Errors and inaccuracies discussed in Section 4 and Sec-
tion 5 are particularly significant in a PC-based TDP rou-
ter due to the general purpose nature of the underlying
hardware and software architecture. In particular, inter-
rupts are serviced a variable amount of time later than
they are triggered by peripheral devices. This latency de-
pends on several factors — among which the priority of
the incoming interrupt, the current CPU load, and the
interrupt service policies of the employed operating sys-
tem — that make interrupt timing heavily non-
deterministic. Since TF beginning and end are determined
by the periodic PCI interrupt generated by the GPS re-
ceiver, each TF begins with a variable unpredictable delay
with respect to ideal operation. Similar uncertainties af-
fect the packet receiving procedure that is triggered by
interrupts generated by network cards.

Additional latencies in transmitting packets stem from
the mono-processor and mono-bus architecture of the PC.
In fact, TDP requires that all interfaces start transmitting
packets scheduled during a given TF at the beginning of
such TF. The TDP router prototype, instead, due to the
above mentioned architectural characteristics, handles
interfaces sequentially, delaying the beginning of trans-
mission on all output links except one. Although the ad-
ditional delay has a minor impact since it is equivalent to
a link being longer (i.e., a greater P̂), its variations con-
tribute to the system inaccuracies that could affect TDP
operation. Such variations are essentially due to the non-
deterministic bus-acquisition time and are outside the
control of the operating system. The additional delay re-
sulting from the above mentioned characteristics of the
PC architecture can be taken into account within p as
defined in Section 4.1.

6.4 Experiments
A first set of experiments is run to measure the various

4 Notice that this does not represent a bandwidth waste since the
transmission link would anyway be idle.

system inaccuracies that affect the forwarding delay eval-
uation and the data-link buffer dimensioning.

As defined by Theorem 3, the forwarding delay must
take into account inaccuracies related to several parts of
the system, i.e., the source of the CTR, the transmitter, the
receiver, and the link. Since our lab is not equipped to
measure each latency component separately, the testbed
shown in Fig. 4(a) is deployed to measure the time inter-
val from the nominal beginning of a TF to the arrival of
the first packet transmitted during the TF to the output
buffer of the next node. Such interval includes the terms
at the numerator of the fraction at the right member of (7)
introduced by Theorem 3: its highest measured value can
be used to derive a lower bound for the forwarding delay.
In order to perform the measurement, an Agilent N2X
Router Tester is used to generate a traffic flow that enters
TDP router R1, is forwarded to router R2, and then is
routed back to the router tester. Since the TF duration is
250 μs, the beginning of the current TF is calculated as the
largest integer multiple of 250 μs smaller than the time of
day devised from the GPS receiver. Time from the GPS
receiver is used on R2 to measure the instant at which the
first packet of each TF reaches the output buffer. Note
that the CTR source inaccuracy can be neglected as its
upper bound TE is 340 ns for the deployed GPS receiv-
er [24]. In addition, the propagation delay is negligible for
all purposes since a short cable is used between the
testbed routers stacked one on top of the other.

Router Tester
R1 R2

GPS

R3R4

R1 R2

f123
f1234 f23

4

f34

1

f412

(a) (b)
Fig. 4. (a) Synchronization error evaluation and (b) full experiment.

0,00E+00

2,00E-03

4,00E-03

6,00E-03

8,00E-03

1,00E-02

1,20E-02

1,40E-02

1,60E-02

0 50 100 150 200 250 300 350 400 450 500

μs

P
o

te
n

ti
a

l
D

e
la

y

L = 64 bytes

L = 250 bytes

L = 500 bytes

L = 1500 bytes

0,00E+00

5,00E-02

1,00E-01

1,50E-01

2,00E-01

2,50E-01

3,00E-01

3,50E-01

4,00E-01

0 25 50 75 100 125 150 175 200 225

μs

P
o

te
n

ti
al

 C
T

R
 R

es
p

o
n

se
 L

at
en

cy

(a) (b)
Fig. 5. (a) Distribution of buffer-to-buffer time; (b) Measured CTR
response latency distribution.

Fig. 5(a) plots the distribution of the time interval
measured over several test runs with fully loaded links
and various packet lengths. The lower bound for the for-
warding delay as derived from the measurements is:

 μs

 μs

480
2 TF

250
d

é ù
ê ú> =
ê úê ú

  3 TFd = . (12)

Notice that, being the propagation delay negligible, the

forwarding delay (750 μs) basically represents the latency
introduced by each node independently of traffic load
condition. This is sensibly lower than the one a packet
could experience in output buffers of a traditional asyn-
chronous router (several milliseconds), especially under
high load conditions.

The described testbed is also used to measure the CTR
response latency Tt for the PC-based router R2, whose
distribution is plotted in Fig. 5(b), as the difference be-
tween the GPS time when the transfer of the first packet
of a TF to the data-link output buffer is initiated and the
nominal beginning of the TF. This is used for dimension-
ing the data-link output buffer according to (11). From
Fig. 5(b) we can derive
 μs195TT » .

Being T negligible for our purposes, it can be concluded
that a suitable size for the data-link buffer is
 ()ˆ 2 43 KBf T TBuff T Cé ù= + E + T × »ë û . (13)

This value is comparable with the size of data-link buf-
fers currently deployed in network nodes, which result
therefore eligible for properly handling CTR inaccuracies.
For example, our Intel PRO/1000 MT server adapters
provide a 64 KB onboard output buffer, which satisfies
the buffer size requirement devised according to (13).

These results are used to tune the system parameters
for a second set of experiments on the network testbed
showed in Fig. 4(b) aimed at validating the inaccuracy-
tolerant operating mode presented in Section 5.2. The
goal of the experiments is to verify that packets traveling
across a large number of TDP routers implementing inac-
curacy-tolerant pipeline forwarding receive deterministic
service with end-to-end delay and jitter within the theo-
retical TDP bounds. In order to be able to create a highly
demanding load on the routers with a limited amount of
equipment, we realized a testbed composed of 4 TDP rou-
ters connected by 100 Mb/s Ethernet links with 250 μs
TFs and routed packets along long paths by having them
traversing multiple times the same node. Specifically, five
traffic flows are injected in the testbed network by the
Agilent Router Tester. Each injected packet loops several
times along a circular route before being routed back to
the Router Tester, which has the combined effect of traffic
traversing long paths and high traffic load resulting on
network links. This is achieved by modifying the for-
warding module to make IP routing decisions based on
both the destination address and the time-to-live (TTL)
field. The flow names subscripts in Fig. 4(b) indicate the
list of routers the corresponding flow traverses. For ex-
ample, flow 1234f enters the network through router R1,
loops along the 4-hop path R1→R2→R3→R4→R1, and
then is routed back to the Router Tester through the same
interface on R1 it came from. Each flow contributes
6.4 Mb/s and loops 5 times through the network, result-
ing in a 21 hop route (considering that R1 is traversed
both entering and exiting the loop) for 1234f and in a
16 hop route for the other flows. This produces an overall
load of 96 Mb/s on each link traversed by flow 1234f , thus
achieving 96% link utilization. Such utilization level is in
line with the analytical and simulation results concerning

blocking in TDP networks presented in Section 2.3. The
overall load is 32 Mb/s on links R1→R3 and R2→R4 as
traversed by less traffic in the network configuration pre-
sented in Fig. 4(b). Therefore, each router forwards about
140 Mb/s corresponding to about 17,000 packets per
second.

TABLE III
END TO END DELAY AND JITTER

Flow
TDP Delay

[ms]

TDP Jitter

[ms]

FIFO Jitter

[ms]

f1234 16.60 0.18 3.10

f123 12.29 0.32 1.98

f234 12.27 0.35 2.28

f341 12.29 0.37 2.28

f412 12.31 0.45 2.32

Deterministic service is obtained by properly reserving

resources to each flow. As described above, we need to
accommodate 6.4 Mb/s flows. First, incoming traffic
needs to be properly time-shaped before being injected in
the TDP network. In our testbed, SVP interfaces are given
an opportunity to transmit packets of each flow every
5 TFs. Second, several flows might share the capacity of
each TF, i.e., the total number of bytes that can be trans-
mitted within its duration. Considering for example link
R1→R2, three flows, namely 1234f , 123f , and 412f , contend
for its capacity; the deployed resource allocation policy
has packets from each of the three flows transmitted dur-
ing the same TF. Consequently, 1/3 of each TF is reserved
to each of the three flows. Notice how, from the point of
view of each flow, being scheduled to transmit for 1/3 of
the TF capacity every 5 TFs corresponds to a maximum
traffic rate of 6.4 Mb/s, thus satisfying our requirements.
Scheduling of the TF to be used on each link (at a specific
loop iteration) by packets belonging to a given flow is
based on the fact that packets transmitted in TF n at
node Ra, are scheduled for transmission at the subse-
quent node Rb in TF 3n + since, from (12), the forward-
ing delay is set to 3 TFs. Since the implementation of a
control plane for TDP is not the purpose of this work,
resource reservation is performed manually for simplici-
ty. However, notice that this process can be automated by
deploying one of the distributed algorithms presented
in [9], as mentioned in Section 2.1.

Delay and jitter measurements on this TDP network
are performed at the Router Tester for all involved traffic
flows and the maximum values observed are shown in
Table III. The measured values of end-to-end delay are
below the analytical bound for the corresponding flow.
The latter can be computed from Equation (1) considering
that the defined SVPs traverse either 21 (the one carry-
ing 1234f) or 16 nodes (the others) and that

0.28 1.25 msW = + is the maximum time taken by the
ingress router to process packets and move them to the
output (roughly estimated from the first set of experi-
ments as 480-195 µs) plus the time packets spend waiting
for the first reserved time frame (ˆ5 fT×). The theoretical
bound on the end-to-end delay contribution due to buf-
fering within network nodes (i.e., excluding the shaping
delay w at the SVP interface) is 750 μs multiplied by the
number of traversed hops minus 1, as expressed by (1).

 13

Furthermore, also the jitter is under the theoretical bound
(ˆ

fT W+) and no losses are observed.
The measurement experiments (i) validate the inaccu-

racy-tolerant operating mode and (ii) demonstrate that
TDP can be easily and properly implemented in a net-
work device, even if based on low cost general purpose
architectures like the PC.

For the sake of completeness, Table III also presents
measurements of the delay jitter experienced by packets
in the network scenario depicted in Fig. 4(b) using tradi-
tional asynchronous routers, i.e., when FIFO (first in first
out) queuing policy is enabled instead of TDP. These re-
sults are significant as they show that the jitter obtained
with asynchronous operation is an order of magnitude
greater (a few milliseconds) than the one guaranteed by
TDP (a few hundreds microseconds) even on the simple
network topology of the testbed.

Although the setup seems simple, the experiment is
producing the most challenging traffic load when it
comes to maintaining proper pipeline forwarding opera-
tion, which is the only traffic management solution able
to avoid congestion in such a network scenario: a heavily
loaded large scale network where a packet flow traverses
several highly loaded links multiplexing cross traffic from
different input links. Hence, this experiment specifically
designed for the purpose, creates the most suitable traffic
load to stress-test a TDP router and identify implementa-
tion shortcomings. More sophisticated traffic patterns
(different from a constant packet flow as used in the ex-
periment) would certainly create interesting challenges to
SVP interfaces, but once in the pipeline forwarding do-
main, packets anyway proceed through the network ac-
cording to a regularly paced forwarding independently of
the profile with which they were generated. When look-
ing at the links in the pipeline forwarding domain, the
only difference that can be possibly observed when the
traffic is offered according to more sophisticated patterns,
is that time frames might not be fully occupied. Finally,
also the simplicity of the network topology does not im-
pact the generality of the experimental results: a more
sophisticated topology would not affect the operation of
the data plane, but rather challenge the control plane.
Previous work [15] has shown through extensive simula-
tion how pipeline forwarding can be successfully dep-
loyed on complex network topologies.

SVP
Interface

Asynchronous
Receiver

OE: Optical-to-Electrical (analog)

EO: Electrical-to-Optical (analog)

Asynchronous
Source

Mindspeed Switch
21151

20 km
Optical Fiber

UTC

GPS/GALILEO

UTC UTC

OE OEEO

Arbitrary
Distance

EO

UTC

Asynchronous
Source

SVP
Interface

TDP access network

Asynchronous
ReceiverTDS optical backbone

Fig. 6. Wide-area testbed with access and backbone networks.

Nonetheless, for the sake of completeness, samples of
experiments run on different network scenarios involving

traffic exchanged by real application, such as streaming
video and file transfer, are provided in the following. In a
first set of experiments [12] a video stream is delivered
across a network similar to the one in Fig. 4(a) on a path
intersected by several synthetic UDP traffic flows also
receiving deterministic service and best-effort back-
ground traffic. In [22] four TDP routers implement a low
capacity TDP access network into a high capacity core
deploying a high performance pipeline forwarding im-
plementation called Time-Driven Switching (TDS) [11], as
shown in Fig. 6. Two PCs generate UDP-based video
streams received by two other PCs while files transfers
are performed among the four PCs. 100 Mb/s links are
deployed in the TDP access network, while the intercon-
nections among the TDS switches, including the 20 km
backbone, are realized with 1 Gb/s optical links. The TF
duration is set to 200 μs in the TDP routers and to 100 μs
in the backbone switches, with 100 TFs per TC in both
types of nodes. A router tester is used in some test runs to
generate background traffic and fully load the network.
In [25] a TDP router time-shapes asynchronous video
streams when forwarding them into a pipeline forward-
ing wide area network encompassing both electronic and
all-optical TDS switches, as shown in Fig. 7. The same
link capacities and CTR structure above are being used.

TDS switch TDS switch

Streaming Media
Source Pipeline

Forwarding
router

25 km
Optical
Fiber

GPS/GALILEO

Streaming
Media

UTC
1PPS

UTC
1PPS

O-EE-O

O-E: Optical-to-Electrical (analog)

E-O: Electrical-to-Optical (analog)

Arbitrary
Distance Arbitrary

Distance

Streaming
MediaE-OO-E

25 km
Optical

Fiber

TDS
All-optical
Switch

FPGAGPS

FPGAGPS
FPGAGPS

UTC
1PPS

UTC
1PPS

TDS switch TDS switch

Streaming Media
Source Pipeline

Forwarding
router

25 km
Optical
Fiber

GPS/GALILEO

Streaming
Media

UTC
1PPS

UTC
1PPS

O-EE-O

O-E: Optical-to-Electrical (analog)

E-O: Electrical-to-Optical (analog)

Arbitrary
Distance Arbitrary

Distance

Streaming
MediaE-OO-E

25 km
Optical

Fiber

TDS
All-optical
Switch

FPGAGPS

FPGAGPS
FPGAGPS

UTC
1PPS

UTC
1PPS

Fig. 7. Wide-area testbed with electronic and all-optical switches.

In all experiments video reproduced by the receivers
operating with very small replay buffers (only about
1 KB) was perfectly fluent and without distortions. In fact,
the jitter measured for the video flows at their receivers
was within the theoretical bounds (e.g, 0.14 and 0.16 ms
on the network in Fig. 7 [25]). These experiments not only
qualitatively and quantitatively demonstrate that pipeline
forwarding is suitable to support real-world streaming
media applications, but further validate our implementa-
tion.

7 CONCLUSIONS
This work focuses on the requirements on the hardware
and software architecture of TDP routers stemming from
their time-driven operation. The analysis in Section 4 and
Section 5 shows that timing inaccuracies can be properly
taken into account in the dimensioning of the system
(e.g., the buffers). This ensures deterministic operation of
network nodes with properties comparable to ideal ones,
i.e., nodes not introducing any inaccuracy.

Experiments conducted on a testbed composed of TDP
routers implemented on commercial personal computers

running the FreeBSD routing software (Section 6) validate
the analytical results. In essence this work demonstrates
that
 Even a general purpose hardware architecture such as

the personal computer that has not been designed to
operate with predictable timing can support proper
TDP operation;

 A traditional asynchronous router software can be
easily modified to include TDP queuing.
A hardware architecture designed to reduce inaccura-

cies possibly coupled with a specialized routing software
(e.g., not running within a general purpose operating sys-
tem such as FreeBSD) would limit the inaccuracies, and
consequently the buffering delay introduced by each
node. However, it is worth noticing that even the buffer-
ing delay introduced by the prototypal TDP router dep-
loyed in the experiments is significantly lower than the
delay (several milliseconds) that a packet could expe-
rience in the output buffer of a traditional asynchronous
router, especially in high load conditions.

REFERENCES
[1] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the

Internet architecture: an overview,” IETF Std. RFC 1633, July
1994.

[2] A. K. Parekh and R. G. Gallager, “A generalized processor shar-
ing approach to flow control – the multiple node case,”
IEEE/ACM Trans. Networking, vol. 2, no. 2, pp.137–150, 1994.

[3] H. Zhang, “Service disciplines for guaranteed performance
service in packet-switching networks,” Proc. of the IEEE, Vol. 83,
No. 10, 1995.

[4] S. Floyd and V. Jacobson, “Link-sharing and resource manage-
ment models for packet networks,” IEEE/ACM Trans. Network-
ing, Vol. 3, No. 4, 1995.

[5] M. Baldi and Y. Ofek, “End-to-end delay analysis of videocon-
ferencing over packet-switched networks,” IEEE/ACM Trans.
Networking, Vol. 8, No. 4, pp. 479-492, Aug. 2000.

[6] G. Nong and M. Hamdi, “On the Provision of Quality-of-
Service Guarantees for Input-Queued Switches,” IEEE Commu-
nications Magazine, Vol. 38, No. 12 , pp. 62-69, Dec. 2000.

[7] S. Blake et al., “An architecture for Differentiated Services,”
IETF Std. RFC 2475, Dec. 1998.

[8] C.-S. Li, Y. Ofek, and M. Yung, “Time-driven priority flow con-
trol for real-time heterogeneous internetworking,” IEEE Int.
Conf. on Computer Communications (INFOCOM 1996), San Fran-
cisco, CA, Mar. 1996.

[9] C.-S. Li, Y. Ofek, A. Segall and K. Sohraby, “Pseudo-
isochronous cell forwarding,” Computer Networks and ISDN Sys-
tems, 30:2359-2372, 1998.

[10] M. Baldi, R. Giacomelli, G. Marchetto, “Time-Driven Access
and Forwarding for Industrial Wireless Multihop Networks,”
IEEE Transactions on Industrial Informatics, vol.5, no.2, pp.99-112,
May 2009.

[11] D. Grieco, A. Pattavina and Y. Ofek, “Fractional Lambda
Switching for Flexible Bandwidth Provisioning in WDM Net-
works: Principles and Performance,” Photonic Network Commu-
nications, Vol. 9, No 3, May 2005, pp. 281-296.

[12] M. Baldi, G. Marchetto, “First Video Streaming Experiments on
a Time Driven Priority Network,” 1st IEEE Multimedia Com-

munications Workshop, Istanbul, Turkey, June 2006.
[13] M. Baldi, J. C. De Martin, E. Masala, A. Vesco, “Quality-

Oriented Video Transmission With Pipeline Forwarding,” IEEE
Trans. Broadcasting, Vol. 54, No. 3, pp. 542-556, Sep. 2008.

[14] M. Baldi, G. Marchetto, “Pipeline Forwarding of Packets based
on a Low Accuracy Network-distributed Common Time Refer-
ence,” IEEE/ACM Transactions on Networking, Vol. 17, No. 6, pp.
1936-1949, Dec. 2009.

[15] M. Baldi, Y. Ofek, “Blocking Probability with Time-driven
Priority Scheduling,” SCS Symposium on Performance Evaluation
of Computer and Telecommunication Systems (SPECTS 2000), Van-
couver, Canada, July 2000.

[16] H. Schulzrinne et al., “RTP: A Transport Protocol for Real-Time
Applications,”IETF Std. RFC 3550, July 2003.

[17] Felser, M.; , “Real-Time Ethernet - Industry Prospective,” Pro-
ceedings of the IEEE , Vol. 93, No. 6, pp.1118-1129, June 2005.

[18] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, “Wire speed packet
classification without tcams: a few more registers (and a bit of
logic) are enough,” ACM Int. Conf. on Measurement and Modeling
of Computer Systems (SIGMETRICS 2007), San Diego, CA, June
2007.

[19] A. Kennedy, X. Wang, and B. Liu, “Energy Efficient Packet
Classification Hardware Accelerator,” Proc. IEEE Int. Symp. On
Parallel and Distributed Processing (IPDPS 2008), Miami, FL, Apr.
2008.

[20] P. Gupta and N. McKeown, “Classifying Packets with Hierar-
chical Intelligent Cuttings,” IEEE Micro, Vol. 20, No. 1, pp. 34-
41, Jan. 2000.

[21] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classi-
fication using multidimensional cutting,” ACM Int. Conf on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM 2003), Karlsruhe, Germany, Aug.
2003.

[22] M. Baldi, G. Marchetto, Y. Ofek, “A Scalable Solution for Engi-
neering Streaming Traffic in the Future Internet,” Computer
Networks (COMNET), Vol. 51, No. 14, pp 4092-4111, Oct 2007.

[23] M. Baldi, G. Marchetto, G. Galante, F. Risso, R. Scopigno, F.
Stirano, “Time Driven Priority Router Implementation and First
Experiments,” IEEE Int. Conf. on Communications (ICC 2006), Is-
tanbul (Turkey), June 2006.

[24] Symmetricom, “bc637PCI-U,” [Online]. Available:
http://www.symmttm.com/products_blt_bc637PCI-U.asp

[25] M. Baldi, M. Corrà, G. Fontana, G. Marchetto, Y. Ofek, D. Seve-
rina, O. Zadedyurina, “Scalable Fractional Lambda Switching:
A Testbed,” IEEE/OSA Journal of Optical Communications
and Networking, Vol.3, No.5, pp.447-457, May 2011.

Mario Baldi holds an M.S. with honors (Summa Cum Laude) in
Electrical Engineering (1993) and a Ph.D. in Computer and Systems
Engineering (1998) both from Politecnico di Torino, Italy. He was
Vice President for Protocol Architecture at Synchrodyne Networks,
Inc., New York and Vice Dean of the PoliTong Sino-Italian Campus
at Tongji University, Shanghai, China. On leave from his position as
Associate Professor at the Department of Control and Computer
Engineering of Politecnico di Torino, he is currently Senior Member
of Technical Staff at Embrane, Inc., Santa Clara, Ca.

Guido Marchetto received the Ph.D. Degree in Computer and Sys-
tem Engineering in April 2008 and the M.S. Degree Summa Cum
Laude in April 2004, both from Politecnico di Torino. He holds a post-
doctoral position at the Department of Control and Computer Engi-
neering of Politecnico di Torino.

