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 Abstract—Pipeline forwarding is a technology with the 
capability of providing both guaranteed quality of service and 
scalability, two fundamental properties for the future Internet. 
Implementing pipeline forwarding requires network nodes to 
operate with a common time reference that in existing literature 
is considered to have relatively good accuracy and usually be 
derived from an external source, such as the GPS or Galileo. This 
is a major requirement possibly hindering the widespread 
deployment of this technology notwithstanding its potential to 
enable a host of new applications. This paper describes and 
analyzes a solution for realizing pipeline forwarding based on a 
low accuracy common time reference distributed through the 
network and presents experimental results obtained with a 
prototypal implementation of the proposed solution. 
 

Index Terms—pipeline forwarding, packet scheduling, 
distribution of a common time reference, network 
synchronization, experiments on a network testbed 

I. INTRODUCTION 
RAFFIC over the Internet continues to grow steadily. In 

particular, the percentage of traffic requiring quality of 
service (QoS) in terms of end-to-end delay and jitter has been 
increasing during the last few years. For example, some 
applications, such as multimedia ones, need a minimum level 
of service quality in order to operate properly.  

Current approaches to offer controlled quality based on the 
Differentiated Services (DiffServ) model [1] combined with 
over-provisioning of resources cannot withstand a significant 
increase in the fraction of traffic with QoS requirements due to 
a combination of the following factors: 
• Current approaches rely on the fundamental assumption 

that differentiated traffic must use only a small fraction of 
the network capacity. Consequently, the additional 
network capacity needed when traffic with QoS 
requirements grows is larger than the increase in (revenue 
generating) traffic. 

• Given that there are many indicators of technology having 
reached a point where it does not follow any more Moore’s 
Law of a tenfold increase every 18 months, the additional 
processing and switching capacity required to follow the 
steep growth curve of Internet traffic with QoS 
requirements has a high cost. 

• In a possible future scenario in which traffic with QoS 
requirements might dominate the Internet, the excess 
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network capacity stemming from over-provisioning is 
likely to remain unused — i.e., not to yield any revenue.  

In essence, the upgrade that a network infrastructure relying 
on the above approaches should undergo in order to support 
such traffic increase is most likely to result in costs larger than 
the economic benefits, i.e., additional revenue brought by such 
services. Hence, a solution that relies on a more efficient 
utilization of network resources, i.e., allowing for traffic with 
QoS requirements to use a large percentage of network 
capacity, is needed.  

On the other hand, approaches based on the Integrated 
Services (IntServ) model [2], although somewhat more 
efficient in the utilization of network resources, have proven 
not to scale due to the high complexity and processing 
requirements associated with packet scheduling algorithms, 
such as packet-by-packet generalized processor sharing 
(PGPS) [3], a.k.a. weighted fair queuing (WFQ), combined 
with the need for their per-flow deployment. Moreover, PGPS 
and other similar well known scheduling algorithms [4][5], 
such as, class based queuing, weighted round robin and others, 
cannot combine optimal delay and resource utilization 
efficiently (see detailed discussion in [6]).  

In summary, existing asynchronous packet scheduling 
approaches either require (very) large amounts of network 
resources or cannot scale to high performance (multi-terabit) 
routers and switches. Pipeline Forwarding (PF) is a packet 
scheduling technique that can satisfy such requirements thanks 
to its unique combination of simplicity and effectiveness by 
deploying a global common time reference (CTR) for shaping 
the traffic through the network. PF provides guaranteed 
quality of service and scalability, as it has been extensively 
studied both analytically and through simulations (see for 
example [7]–[9]) and experimentation [10][11]. PF properties 
basically stem from the predictability it introduces in network 
operation, hence on the service offered to packets traversing it. 
PF is currently deployed in an experimental testbed 
interconnecting Turin, Milan, and Trento, the impact of its 
hypothetical deployment in the network of an Internet Service 
Provider such as Telecom Italia has been assessed in the 
context of a project sponsored by Telecom Italia Labs [12], 
and its market potential as a commercial application of the 
Galileo positioning system has been evaluated in the context 
of the Harrison Project funded by the Galileo Supervisory 
Authority. 

Also S&G Queuing [13] uses a time reference to drive 
packet forwarding in routers with FIFO-like scheduling 
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complexity — i.e., the solution has the potential to scale to 
high performance architectures. However, S&G Queuing 
relies on a “per link” time reference derived from the 
transmitter end independent local clock. The variable drift of 
clocks used on various input links at a router can lead to the 
impossibility of maintaining the timing profile characterizing 
traffic at the network edge, which eventually results in 
variable delays, jitters and, in the worst case, buffer overflows 
and packet loss. 

Instead PF is based on a time reference (CTR) common to 
all network nodes. Since in much previous work, including 
prototypal implementations, the CTR is derived from UTC 
(coordinated universal time), the technology is often referred 
to as UTC-based pipeline forwarding. If UTC is provided 
through an external channel (e.g., Global Positioning System 
(GPS) is used in the prototypes described in [10] and [11]) the 
system is said to be based on an externally-distributed CTR. If 
an inter-switch synchronization protocol is used to distribute a 
timing signal through the network (as proposed in [8], for 
example), the system is said to be based on a network-
distributed CTR. In both cases, original PF operating 
principles (as defined in [8]) imply that the CTR error in 
different nodes be smaller than the PF operation time unit, 
which is called a time frame (TF).  Relying on such an 
accurate (either externally or network distributed) CTR is a 
major requirement on network nodes and network operations 
that some see as a hurdle with the potential to hinder PF 
deployment. This motivates this work that proposes, analyzes, 
and reports on experiments with a PF implementation 
supporting a low accuracy network distributed CTR. 
Specifically, this paper makes the following contributions: (i) 
a solution for CTR distribution with minimum impact on 
system complexity is defined, (ii) a set of operational rules to 
ensure proper PF operation with CTR error larger than one or 
more TFs is specified, (iii) resulting buffering requirements 
are devised, and (iv) consequences on the quality of the 
service provided in terms of delay and jitter are analyzed. 
Notice that although in this work (ii), (iii), and (iv) are devised 
assuming the synchronization model underlying the CTR 
distribution solution at (i), they can be straightforwardly 
generalized to various CTR distribution alternatives, i.e., their 
relevance is not limited to the proposed CTR distribution 
solution. In essence, the paper shows how minimal changes to 
the PF algorithm originally proposed enable proper operation 
with a low accuracy network-distributed CTR. Although the 
proposed changes to PF are minimal — which contributes to 
the relevance of this work since they do not affect the system 
complexity — they have a major impact because PF 
deployability is greatly improved. In particular, given that the 
proposed CTR distribution solution can be implemented by a 
low complexity software module, this work facilitates PF 
deployment in low end network nodes, such as at the wired or 
wireless edge of the network. This is key to take full 
advantage of PF in terms of guaranteed QoS as its benefits can 
be fully enjoyed when it is deployed end-to-end [6]. 

After a short description of PF and its deployment options 
(Section II), the paper discusses network synchronization 

issues in general (Section III.A), outlines the basic principles 
of the synchronization solution proposed for the distribution of 
the CTR through a network (Section III.B). In fact, 
Section III.B also sets the context for this work: a stable 
network scenario, i.e., changes in the availability of links and 
nodes (e.g., due to failures) are not taken into consideration 
here. Section IV analyzes the impact of a network-distributed 
CTR on the implementation and deployment of the PF 
scheduling algorithm. Various options for the distribution of 
the CTR and a proposed protocol are discussed in Section III, 
while experimental results on a testbed implementing the 
proposed solution are presented in Section V. The outcome of 
this work and future work directions are finally discussed in 
Section VI. 

II. UNDERLYING PRINCIPLES AND TECHNOLOGIES 
As the context of this work is a network performing 

Pipeline Forwarding (PF) of packets, this section briefly 
introduces this technology and its deployment options. An 
extensive and detailed description of pipeline forwarding is 
outside the scope of this paper and is available in the 
literature [7]–[9]. 

A. Pipeline Forwarding 
In PF all packet switches utilize a basic time period called 

time frame (TF). The TF duration Τ  may be derived, for 
example, as a fraction of the UTC second received from a 
time-distribution system such as the GPS and, in the near 
future, Galileo. As shown in Fig. 1, TFs are grouped into time 
cycles (TCs) and TCs are further grouped into super cycles; 
this timing structure aligned in all nodes constitutes a CTR.  
Each super cycle might last one UTC second like, for 
example, in Fig. 1, where the 125-μs time frame duration Τ  is 
obtained by dividing the UTC second by 8000; sequences of 
100 time frames are grouped into one time cycle, and runs of 
80 time cycles are comprised in one super cycle (i.e., one UTC 
second). 
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Fig. 1. Common time reference structure 

During a resource reservation phase TFs are partially or 
totally reserved for each flow on the links of its route. Thus, 
TFs can be viewed as virtual containers for multiple packets 
that are switched and forwarded according to the CTR. In the 
PF deployment in the literature, the TC provides the basis for 
a periodic repetition of the reservation, while the super cycle 
offers a basis for reservations with a period longer than a TC. 
In another possible deployment the reservation phase can be 
done on the fly before transmitting a packet without 
necessarily maintaining it across multiple TCs.  

A signaling protocol must be chosen for performing 
resource reservation and TF scheduling, i.e., selecting the TF 
in which packets belonging to a given flow should be 
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forwarded by each router. Existing standard protocols and 
formats should be used whenever possible. Many solutions 
have been proposed for distributed scheduling in pipeline 
forwarding networks [7] and the generalized MPLS (G-
MPLS) control plane provides signaling protocols suitable for 
their implementation. In the traditional traffic management 
models for QoS support, such as ATM User-Network 
Interface and Integrated Services, applications signal their 
QoS requirements to the network for each flow (usually called 
microflow); queuing algorithms used in asynchronous packet 
switches have to maintain status information for each micro-
flow, which is not scalable. Pipeline forwarding does not 
require per-micro-flow status in intermediate nodes, thus 
having similar provisioning scalability as the DiffServ model, 
where micro-flows are aggregated in the network to improve 
scalability [14]. 

The basic pipeline forwarding operation as originally 
proposed in [7] and [8] is regulated by two simple rules: (i) all 
packets that must be sent in TF k by a node must be in its 
output ports' buffers at the end of TF 1k − , and (ii) a packet p 
transmitted in TF k by a node nN  must be transmitted in TF 
k α+  by the following node 1+nN , where α  is a predefined 
integer called forwarding delay, and TF k and TF k α+  are 
also referred to as the forwarding TF of packet p at node nN  
and node 1+nN , respectively. It follows that packets are timely 
moved along their path and served at well defined instants at 
each node. Nodes therefore operate as they were part of a 
pipeline, from which the technology’s name is derived. 
Consequently, given the TF at which a packet enters the 
network, the time at which the packet is forwarded by each 
node and eventually reaches its destination is known in 
advance with the accuracy of one TF. 

The value of the forwarding delay is determined at 
resource-reservation time and must be large enough to satisfy 
(i). Note that the time a packet requires to go from the output 
buffer of a node to the output buffer of the following one is 
strictly dependent on the performance of both nodes and the 
distance between them. Thus, the minimum value acceptable 
for α  could vary depending on the previous hop from which a 
packet is received. Defining nA  as the set of the neighbors of 

nN , a set of different minimum acceptable forwarding delays 
, :nm m nm N Aα ∈  have to be defined for nN . 

PF guarantees that reserved real-time traffic experiences: (i) 
bounded end-to-end delay, (ii) low delay jitter independent of 
the number of nodes traversed (less than two TFs when the 
CTR accuracy is smaller than a TF [8]), and (iii) neither 
congestion nor resulting loss. 

B. Deployment Options 
Time-driven priority (TDP) [8] is a synchronous packet 

scheduling technique that enables combining PF with 
conventional routing mechanisms to achieve high flexibility 
together with guaranteed service. While scheduling of packet 
transmission is driven by time, the output port can be selected 
according to either conventional IP destination-address-based 
routing, or multi-protocol label switching (MPLS), or any 
other technology of choice. Within a TF packets can be 

switched and forwarded asynchronously, i.e., in an arbitrary 
order and to different output ports. 

In Time-driven switching (TDS), originally proposed to 
realize sub-lambda or fractional lambda switching (FλS) [9], 
all packets in the same TF are switched in the same way, i.e., 
altogether to the same output port. Consequently, header 
processing is not required, which results in low complexity 
(hence high scalability) and enables optical implementation. 

Although with a different degree of flexibility, both TDP 
and TDS can handle non-pipelined (e.g., best-effort) packets 
that can be transmitted during any unused portion of a TF, 
whether not reserved or reserved but actually unused.  

III. NETWORK SYNCHRONIZATION 

A. An Overview 
Several applications and technologies require network 

synchronization for their operation. These requirements are 
different depending on the specific environment. For example, 
a distributed software system may require a time-of-day 
synchronization in order to correctly perform transactions. The 
Network Time Protocol (NTP) [15] is often used for this 
purpose; it carries timing information deployed by a software 
phase locked loop (PLL) that maintains time-of-day 
synchronization by recovering the error on the system time 
introduced by the limited accuracy of the local oscillator. 
Current implementations of this type of network 
synchronization are based on an application layer protocol 
deployed by an application (daemon) process running on 
clients. SONET/SDH, on the contrary, needs synchronization 
at the physical layer in order to pace transmission of bits. The 
timing signal is distributed directly at the physical layer as 
defined by specific ITU standards. 

TDP uses a CTR to determine when to transmit packets, 
i.e., packets must be sent out in predefined time-slots uniquely 
identified throughout the whole network. Similarly, in TDS a 
CTR is deployed by all switches across the network to 
determine when to change their input-output interconnections. 
In particular, in a PC-based implementation of a TDP 
router [10], a periodic UTC-aligned signal generated (as an 
interrupt on the PCI bus) by a GPS receiver is used for 
indicating the beginning of a new TF, i.e., it triggers the 
transmission of packets scheduled for that TF. Analogously, 
the switch controller of a TDS switch [11] prototypal 
implementation uses a signal from a GPS receiver to trigger 
the reconfiguration of the switching fabric at the beginning of 
each TF according to a pre-defined, periodic pattern. Thus, PF 
requires time-of-day (here represented by the number of a TF 
within a TC) synchronization, which the GPS distributes with 
very high accuracy. However, the use of the GPS requires the 
deployment of GPS receivers (i.e., specific hardware) and the 
availability of a properly positioned outdoor antenna. Thus, a 
GPS-based synchronization solution is often impractical for 
logistics and cost reasons that some see as a drawback with the 
potential to hinder the deployment of PF. For these reasons 
this work investigates PF operation based on a network-
distributed CTR.  

Several network synchronization techniques have been 
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proposed, including the aforementioned NTP and 
SONET/SDH synchronization solution. Worth mentioning, 
IEEE 1588 [16] and Synchronous Ethernet [17] have recently 
been proposed specifically to provide synchronization in 
packet switched networks. All these solutions aim at a very 
high accuracy, which results in high complexity and, in the 
case of SONET/SDH, the deployment of dedicated channels 
for carrying synchronization signals. However, in this paper 
we show (see Section IV) that, unlike circuit switching 
technologies, like SONET/SDH, PF does not require high 
accuracy in the realization of the CTR. In fact, since PF nodes 
handle packets, buffering can be leveraged on to relax 
accuracy requirements: an appropriate size buffer enables 
correct PF operation by delaying packets based on the relative 
accuracy of the time reference on neighboring nodes. For 
example, if the time reference of an upstream node is early 
with respect to its downstream neighbor, packets are buffered 
in the latter until their forwarding time according to local time 
reference. A late time reference of an upstream node with 
respect to its downstream neighbor can instead be dealt with 
by introducing a larger forwarding delay than required by the 
nominal packet transfer time between the two nodes, which 
implies additional buffering in the downstream node. 
Section IV is devoted to devising how a PF node can be 
dimensioned based on the CTR accuracy and proving that a 
properly dimensioned system provides the benefits typically 
offered by PF as originally defined in [7] and [8]. 
Consequently, the complexity of existing synchronization 
distribution solutions required to achieve high accuracy is not 
justified when aiming at PF deployment. For these reasons, a 
customized, low complexity network synchronization solution 
is desirable.  

An inter-switch synchronization protocol proposed in [18] 
was specifically adapted to PF in [8]. This solution, aimed at a 
CTR error among nodes smaller than one TF, requires each 
node to have a local clock to trigger the beginning of each TF. 
The CTR distribution solution proposed in this work is based 
on directly triggering the beginning of a new TF on a node 
when a synchronization signal reaches such node. This 
protocol is simple and effective as it (i) does not rely on a 
local clock, hence enabling a (ii) software-only 
implementation, (iii) provides the required time-of-day 
synchronization, and (iv) does not require dedicated network 
resources as the synchronization signal is piggybacked by data 
packets. Being simple and not requiring specific hardware, the 
proposed CTR distribution solution is particularly suitable for 
the deployment in low end nodes, such as at the edge of the 
network (e.g., home gateways and wireless access points). The 
following subsections present and analyze this protocol and its 
implications on the network synchronization. 

B. Network Synchronization Model 
The proposed method to achieve network synchronization 

consists in nodes distributing a synchronization signal to their 
neighbors that can be processed by receiving nodes and used 
to trigger the beginning of TFs. Since a node could have 
several neighbors, it could receive more than one timing 

signal. One of the neighbors is to be selected as 
synchronization source for the node. The selection of the 
synchronization interface has to be done in such a way that 
each node has a synchronization path to a predefined node that 
acts as time server (i.e., a node that distributes a well defined 
time reference at which it is synchronized and which becomes 
the common time reference for the entire network). This 
results in a logical tree topology, referred to as 
synchronization tree, built over the physical mesh network, as 
shown in Fig. 2. The root of this tree is named 
Synchronization Signal Server (S3) and the interface from 
which a node acquires the synchronization signal is called 
Synchronization Signal Server Port (S3P). The establishment 
of this logical tree topology could be automated using several 
methods. For example, a customization of the Spanning Tree 
Protocol or the information contained in a routing protocol 
database (e.g., the OSPF’s) could be used. The definition of 
mechanisms and protocols for these purposes is outside the 
scope of this paper and left for future work. 

S3

S3P
Synchronization Tree

 
Fig. 2. Synchronization distribution model. 

The resulting synchronization model consists in a 
synchronization signal generated by a server (the S3) 
spreading like a wave through the network and reaching all 
nodes. Since the synchronization signal experiences a non-
zero propagation delay and, being network nodes non-ideal, its 
transmission/reception/processing are affected by non-zero 
variable latencies, each TF features a synchronization error, 
i.e., a variable time difference between the beginning of the 
generic TF k at the S3 and the beginning of the same TF at the 
generic node nN . The original PF algorithm was studied and 
developed under the assumption of all nodes sharing a, 
possibly UTC-aligned, CTR ensuring that TFs begin 
simultaneously on all nodes, as shown in (a) or with a 
difference across all nodes smaller than a TF [8]. Section IV 
will show that few minor modifications to the PF algorithm 
are actually sufficient to allow proper operation when network 
nodes are affected by synchronization errors of any 
magnitude. However, such modifications ensure proper PF 
operation if the synchronization error, and specifically its 
maximum variation, are known. Hence, the remainder of this 
section is devoted to the synchronization error analysis , under 
the assumption that the synchronization signal on reaching a 
node directly triggers the beginning of a new TF1. 

Let (see Fig. 3):  
• k

niT  be the instant when the synchronization signal that 
determines the beginning of TF k reaches the S3P of the 

 
1 The following analysis can be easily extended to other approaches, such 

as synchronizing through the network a local clock that triggers the beginning 
of a new TF. 
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generic node nN , i.e., the instant at which TF k should 
begin at nN  if there were no latencies. 

• k
nbT  be the instant at which the TF k actually begins at 
nN . 

• k
noT  be the instant at which the synchronization signal is 

transmitted by node nN  at the beginning of TF k. 
• nTe  be the minimum time that nN  needs to react to the 

synchronization signal, which includes receiving and 
processing latencies. 

• k
nTeΔ  be the variable component of the time that nN  

needs to react to the synchronization signal indicating the 
beginning of the generic TF k, where 

 max0      .k
n nTe Te k≤ Δ ≤ Δ ∀  (1) 

• nTt  be the minimum time that nN  takes to output (i.e., to 
begin the transmission of) the synchronization signal 
corresponding to the beginning of a TF. nTt  is the output 
side equivalent of the previously introduced nTe and 
includes transmitting latencies. 

• k
nTtΔ  be the variable component of the time that nN  

takes to output the synchronization signal indicating the 
beginning of the generic TF k, where 

 max0      .k
n nTt Tt k≤ Δ ≤ Δ ∀  (2) 

• mnTp  be the propagation delay — considered constant — 
on the link connecting two adjiacent nodes mN  and nN . 

• k
nΦ  be the synchronization error concerning TF k  

affecting the generic node nN . As defined above this 
equals the delay with which a TF begins at a node nN  
with respect to the time at which the same TF begins at 
the S3, i.e. 3S

k k
nb b−T T . 

Let’s consider a synchronization path in the network 
consisting of a sequence of nodes { }dNNN ,...,, 10 , where 0N  
is the S3 from which the others receive the synchronization 
signal through the synchronization path. At 0N  the 
synchronization signal for a certain TF k starts as soon as the 
reference clock triggers the beginning of such TF. Given the 
above described inaccuracies, the instant at which TF k begins 
at node dN  is 
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That is, the respective synchronization error k
dΦ  consists of 

two components: a constant (i.e., time invariant) one dφ , and a  
time variant one k

dφΔ : 
 k k
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In conclusion, a generic node nN  is affected by a 

synchronization error k
nΦ  which depends on its position along 

the synchronization path. 
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Incoming synchronization signal

Outgoing synchronization signal
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ni T�k

nb T k
no

Δ k
neTneT−( 1)n npT ntT Δ k
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Fig. 3. Notation. 

C. Synchronization Signal Transfer Options 
Several solutions could be adopted in order to implement 

the presented CTR distribution method, specifically to 
transmit the synchronization signal. Some alternatives are 
presented and compared leading to the TF delineation protocol 
described in Section III.D. 

The synchronization signal could be transmitted at the 
physical layer using for example redundant codes in the line 
coding, modulation exceptions, or a dedicated wavelength on 
optical links. Physical layer operation results in a small 
synchronization error variation, i.e., considering a generic 
node nN , max

nφΔ is limited as the uncertainties on the 
transmission and reception of the signal are small. However, 
this solution presents some drawbacks: 
• It requires specific hardware, i.e., the logic handling the 

transmission and reception of the synchronization signal. 
• Intermediate layer protocols have to be modified in order 

to allow the synchronization signal received at the 
physical layer to reach the PF scheduler at the protocol 
layer it is operating.  

• The resulting PF implementation is not general and 
portable as it is dependent from both lower layer 
protocols and the availability of specific hardware. 

Transmission of the synchronization signal at an 
intermediate protocol layer has all the drawbacks listed above, 
while lacking the advantages related to the small variation of 
the synchronization error. Consequently, although possible, a 
CTR distribution based on intermediate layer protocols is not a 
sensible solution unless implementation or deployment 
specific reasons suggest otherwise. 

Alternatively, the synchronization signal can be 
implemented at the layer at which PF is deployed (e.g., IP). 
Two categories of approaches, requiring different types of 
information into packets, can be envisioned: (i) a time stamp 
(e.g., TF number and TC number) can be included in each 
packet, or (ii) a TF delimiter can be transmitted at the 
beginning of each TF. 

The former is more robust as a receiving node misses the 
beginning of a new TF only if all packets transmitted by an 
upstream node during that TF are lost. Moreover, even if this 
happens, the node recovers the correct TF from the 
information carried by packets received during the following 
TF. However, this solution (i) introduces transmission and 
processing overhead resulting from the 16 bit (or more) 
integer that represents the time stamp, and (ii) requires 
modifications to the protocol headers as common protocols 
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(e.g., IPv4, IPv6, Ethernet, MPLS) do not feature any field 
suitable for carrying such time stamp.  

The solution based on a TF delimiter can be implemented in 
various ways ranging from defining a control packet to be 
transmitted as a delimiter to setting a 1 bit field in the first 
packet transmitted during a TF. The latter introduces a very 
limited transmission and processing overhead and it is not 
unlikely that an unused bit be found in an existing protocol 
header, thus not requiring major modifications to the 
standards. For example, a non reserved codepoint of the 
DiffServ (DS) field could be used to implement CTR 
distribution with IP packets. The drawbacks of this solution 
are: 
• Sensitivity to packet loss — a node goes permanently out 

of synchronization when the TF delimiter is lost; 
• An additional mechanism is needed at system startup to 

carry a time stamp allowing each node to initialize the TF 
and TC identity.  

D. TF Delineation Protocol 
In previous work [10] the authors defined a protocol for PF 

routers with an externally-distributed CTR to exchange timing 
information used for the evaluation of the forwarding TF on 
each node. Here this protocol is proposed as a TF delineation 
protocol in a PF network based on a network-distributed CTR 
according to the synchronization model presented in 
Section III.B to implement an efficient and simple CTR 
distribution solution. The protocol is based on the combination 
of a robust TF delimiter and compressed time stamp, thus 
drawing from the strengths of the two solutions, while 
avoiding their drawbacks, both highlighted in Section C. As 
presented in the following, the solution deploys the DS field of 
the IP header, however, it can be similarly implemented with 
other protocols (for example, the EXP field of the MPLS shim 
header can be analogously used). 

Three bits of the DS field, i.e., 8 unreserved DS codepoints, 
are used to carry the delimiter/compressed time stamp. Bits 
0x0c are set in all PF packets to distinguish them from those 
not receiving PF service (e.g., best-effort or differentiated 
service packets), bit 0x10 is set to 1 (0) in packets transmitted 
during odd (even) TFs, and bits 0x20 and 0x40 toggle their 
value every TC and every super cycle, respectively. This 
results in an alternating-bit protocol for TF and TC 
identification2. PF routers maintain the number of the TF and 
TC during which the last received packet was transmitted by 
the upstream node. This information is updated every time the 
DS codepoint of a packet is different with respect to the 
previous packet. TF and TC initialization is performed by 
setting the TF and TC number to zero the first time the bit 
corresponding to super cycle (0x40) toggles. Consequently, 
system initialization lasts up to 1 s (i.e., the super cycle 
duration), but happens only when the router starts up and does 
not require transmission of additional information. When a 
 

2 Such mechanism can be seen as the transmission of a time stamp 
composed of the TC and TF number where, in order to reduce the amount of 
information transmitted, the numbers are compressed by sending only the 
least significant bit. Also, the mechanism can be seen as delimiting the 
beginning of each TF by changing the DS codepoint. 

node has no packets (including non-PF packets) to transmit 
during a TF on a given link, it sends sequences of padding IP 
packets with TF and TC marking for keeping the router at the 
other end synchronized3.  

While timing information is coming from all interfaces, 
only the one received through the S3P is used by a router to 
derive the CTR, i.e., to trigger the beginning of a new TF. 

Note that the proposed solution can be implemented with 
software only components, thus enabling upgrade of existing 
equipment and reducing costs with respect to other solutions 
that are based on integrated circuits used to control local 
clocks.  

IV. PACKET SCHEDULING ALGORITHM 
Previous work on PF and current implementations are based 

on a UTC-aligned, accurate CTR, i.e., 0, ,k
n k nΦ = ∀ . 

Considering a network scenario where nodes are characterized 
by a variable 0k

nΦ ≠ , PF properties, implementation, and 
deployment rules have to be reconsidered. The modifications 
required to a PF router initially implemented for and deployed 
with an externally-distributed CTR are presented as an 
example. 

Specifically, a PF router performs four fundamental PF-
related steps: it (i) devises the TF during which each received 
packet was sent out by the previous node, (ii) calculates the 
forwarding TF of the packet based on the predefined 
forwarding delay, (iii) stores the packet in a queue 
corresponding to its forwarding TF; (iv) whenever a new TF 
begins, it transmits all the packets stored in the queue 
corresponding to the TF. The rules and constrains driving 
these steps are part of the PF scheduling algorithm and are 
presented in several publications [7][8] for PF based on an 
accurate CTR. The following sections analyze the 
modifications required to such rules and constraints when 
routers deploy a low accuracy, possibly network-distributed 
CTR. Note that these results can be applied independently of 
the network synchronization distribution protocol deployed. 
The PF rules defined in [7] for a scenario with ideal CTR, are 
generalized here for the case of any synchronization accuracy. 

A. TF Duration 
One implication of the synchronization error including a 

variable component is that the actual duration k
nτ of a generic 

TF k at the generic node nN  as derived from the 
synchronization signal is not constant, as shown in (b). The 
actual duration of TF k at node nN  is given by the difference 
between the beginning instants of TF k+1 and k, i.e.,  

1k k k
n n nb bτ += −T T , which, from the definition of k

nΦ , can be 
expressed as  
 3 3

1 1
S S

k k k k k
n n nb bτ φ φ+ += + Δ − − ΔT T . (7) 

If, as it is reasonable, the latencies in receiving and 
processing an external synchronization signal by an S3 are 

 
3 Notice that this does not represent a bandwidth waste since the 

transmission link would anyway be idle. 
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ignored, 3 3
1 ,S S

k kb b k+ − =Τ ∀T T . Thus, given that min 0,n nφΔ = ∀ , 
we have that 
 max max .k

n n nφ τ φΤ − Δ ≤ ≤ Τ + Δ  (8) 

Since resource reservation is based on TF nominal 
duration Τ , a variable TF duration may result in the 
impossibility of keeping PF schedules during shorter TFs (i.e., 
some packets scheduled for a TFs cannot be transmitted 
because the TF finishes too early), with consequent possible 
packet backlog at the PF buffers, buffer overflow, and packet 
drops. 

Guaranteeing deterministic quality of service, i.e., no loss 
and unpredictable delay and jitter due to network congestion, 
is possible by simply forwarding all packets that match the 
predefined schedule for TF k, i.e., that have been reserved 
resources during TF k, even if this requires extending the 
transmission beyond TF k end, i.e., after 1k

nb +T . According to 
this new operation mode, the transmission of packets 
scheduled during a TF k ends at different times on different 
output interfaces of the same node. This leads to a new 
definition for the TF beginning, which is no longer specific 
only to a node nN , but also to a particular output interface: 

Definition 1. In a PF node using a network-distributed CTR 
realized according to the presented synchronization 
mechanism, the beginning of a new TF on an output interface 
is identified by the latest of the following events: 
1) the synchronization signal is received at the S3P, 
2) the output buffer corresponding to the current TF on the 

given interface becomes empty. 
The above definition is coherent with the original definition 

of TF with an ideal CTR, in which case 1) is the possibly 
external timing signal triggering the beginning of a new TF 
and 2) is guaranteed to happen before such event. Moreover, 
Definition 1 can be modified to fit other CTR distribution 
solutions by substituting event 1) with whatever timing event 
triggers the beginning of a new TF. 

Transmission of packets scheduled during a TF lasts at most 
Τ  (resource reservation is based on this value), while the 
minimum TF duration, given by (8), is max

nφΔ−Τ . Thus, the 
maximum time packet transmissions can continue beyond TF 
duration, namely after the arrival of a synchronization signal, 
is max max .ex nT φ= Δ  This happens when a TF has minimum 
duration; the condition for such event can be derived from (6) 
as  

 
max

1 min 0.

k
n n
k
n n

ϕ ϕ

ϕ ϕ+

⎧Δ = Δ⎪
⎨

Δ = Δ =⎪⎩
 (9) 

Consequently, the maximum error on the beginning of TF 
k+1, i.e., the maximum synchronization error, on a generic 
output interface of a generic node nN  according to 
Definition 1 is obtained by adding max

exT  to the maximum 
synchronization error of TF k+1 as given by (4) and then 
applying (9), thus obtaining 
 maxmaxminmax

nnexnnn T φφφφ Δ+=+Δ+=Φ . (10) 

Thus, it can be concluded that the network synchronization 
model presented in Section III.B also applies when TFs 
comply with Definition 1 and the proposed definition of the 
TF beginning does not affect the maximum synchronization 
error. However, in this case the network-distributed CTR 
features a different synchronization error for each interface. 
Equation (10) is extended as follows in order to capture this: 
 max max , :nm nm nm m nm N Aφ φΦ = + Δ ∈ , (11) 

where nA  denotes the set of the neighbors of the generic node 
nN , as defined in Section II.A, and nm refers to the interface 

of nN  connected to the link to mN . 

B. Forwarding TF Evaluation 
As discussed in Section II.A, PF operation determines a 

dependency among the forwarding TFs for each packet in all 
the nodes across the network. The forwarding TF at a generic 
node nN  can be expressed, in accordance to [8], as: 
 1 ( 1)n n n nF F fα− −= + + , (12) 

where: 
• nF  is the forwarding TF of the packet at the generic node 

nN . 
• 1nF −  is the forwarding TF of the packet at the previous 

node 1nN −  on the path of the packet.5 
• ( 1)n nα −  is the minimum acceptable forwarding delay 

(introduced in Section II.A) between node 1nN −  and node 
nN . In order to make sure that packets are already in the 

output buffer of node nN  when their forwarding TF 
begins, the forwarding delay must be greater than or 
equal to the sum of the propagation delay on the link 
connecting the nodes, the processing time, and additional 
latencies that characterize both nodes. Given 1nN −  and 

nN , we can express this sum as 
 1

1 1 ( 1)( 1)
F F Fnn n

n n n n n nn nD Tt Tt Tp Te Te−
− − −− = + Δ + + + Δ , (13) 

  which, considering the worst case max
( 1) 1n n nD Tt− −= +  

  max max
1 ( 1)n n n n nTt Tp Te Te− −Δ + + + Δ , leads to 

 
max
( 1)

( 1)
n n

n n
Dα −

−
⎡ ⎤

= ⎢ ⎥Τ⎢ ⎥
. (14) 

• f  models the adopted forwarding scheme [7]. 0f =  
represents immediate forwarding operation, i.e., applying 
the minimum acceptable forwarding delay. 
f +∈ models non-immediate forwarding operation, i.e., 

deploying a larger forwarding delay, which enables 
reducing blocking probability at the expenses of 
implementation complexity by not necessarily forwarding 
a packet as soon as it is available at the output port [7][9]. 

The above forwarding TF calculation method refers to the 
case where all network nodes are perfectly synchronized, i.e., 

0, ,k
n k nΦ = ∀ . If the CTR is distributed through the network 

using the presented technique, (i) TFs do not begin at the same 
time on all nodes, (ii) the synchronization error is different at 
each node (i.e., k k

n mΦ ≠ Φ  if n mN N≠ ), and (iii) both TF 
alignment and synchronization error vary in time (i.e., 
 

5 Although nF  and 1nF −  are packet dependant, the packet is not explicitly 
indicated to simplify the notation. 



 8

k k
n nφ φ ′Δ ≠ Δ , if k k ′≠ ). This has to be considered in the 

forwarding TF calculation. 
Theorem 1. In a PF network where the CTR is distributed 

to nodes with a non-zero synchronization error, proper PF 
operation is ensured when the forwarding TF for a packet is 
calculated at the generic node nN as: 
 1 ( 1)n n n nF F fα ∗

− −= + + , (15) 

where 

 
max min max

1 ( 1)
( 1)

n n n n
n n

Dα − −∗
−

⎡ ⎤Φ − Φ +
= ⎢ ⎥Τ⎢ ⎥

. (16) 

Proof. Given a forwarding TF nF  at a node nN , a 
necessary and sufficient condition that guarantees the PF 
algorithm to work properly is that the time at which the packet 
transmission is scheduled at node nN , i.e., the time 
(corresponding to Fn

noT ) at which transmissions for TF k 
begins at node nN , follows the time at which the packet enters 
the output buffer of the node (denoted as Fn

nibT ), i.e.,  
 .F Fn n

n no ib≥T T  (17) 
Given the definition of Fn

nbT  in Section III.B, we can write 
 3

n n n
S

F F F
n no b= + ΦT T  (18) 

and 
 1 1 1

3 1 ( 1) .n n n n
S

F F F F
n n n nib b D− − −

− −= + Φ +T T  (19) 

Since the inequality (17) has to hold for every value of Fn
nΦ  

and 1
1

Fn
n

−
−Φ , specifically for the worst case we can derive: 

 1
3 3

min max max
1 ( 1) ,n n

S S
F F

n n n nb b D−
− −+ Φ ≥ + Φ +T T   

and converting in TFs as a time measurement unit, we obtain: 

 
max min max

1 ( 1)
1 .n n n n

n n
DF F − −

−
⎡ ⎤Φ − Φ +

≥ + ⎢ ⎥Τ⎢ ⎥
  

□ 
Note that (14) can be derived from (16) with 

1
1 0F Fn n

n n
−

−Φ = Φ = . 

C. Buffer Dimensioning 
Buffers have to be properly dimensioned in network nodes 

to guarantee that no packet is lost when nodes perform PF. 
The additional delay packets incur due to the deployment of a 
network-distributed CTR has to be taken into account when 
dimensioning the buffers. 

Theorem 2. Let R  be the output link capacity. The size of 
the buffer on the output interface of a node nN  that guarantees 
no loss for a pipelined packet is: 

 ( )( 1) ( 1) ,n n n n nBuff f Rα β∗
− −= + + ⋅Τ ⋅  (20) 

where, defining min min min
( 1) 1 1 ( 1)n n n n n n n nD Tt Tt Tp Te Te− − − −= + Δ + + + Δ , 

 
max min min

1 ( 1)
( 1)

n n n n
n n

Dβ − −
−

⎡ ⎤Φ − Φ −
= ⎢ ⎥Τ⎢ ⎥

. (21) 

Proof. For each TF, PF output buffers on node nN  have to 
store packets from the instant (denoted as k

nibT  for the generic 
TF k) they enter the buffer of the node to the moment they 

begin to be sent out ( k
noT  for TF k)6. The maximum difference 

between such instants over time is: 
 ( )max .k k

n n
k

o ib−T T  (22) 

Considering that (i) a queue must be associated to each TF, 
(ii) its size must have sufficient capacity to contain the total 
amount of bytes that can be transmitted during such TF (i.e., 

R⋅Τ  bits), and (iii) each queue can be reused (i.e., associated 
to another TF) as soon as the associated TF is over and all its 
packets have been transmitted, the minimum total number of 
required queues is given by the minimum number of TFs 

TFN such that their total duration is longer than (22) , i.e.: 

 
( )max k k

n n
k

TF

o ib
N

⎡ ⎤−
⎢ ⎥=
⎢ ⎥Τ
⎢ ⎥

T T
.  

Considering that by definition 3 /S
kb kΤ =T� ,from (15), (18), 

and (19) we can derive  
 ( 1) ( 1)TF n n n nN fα β∗

− −= + + . (23) 

Given that each queue should be capable of storing R⋅Τ  bits, 
the total buffer requirement is: 
 n TFBuff N R= ⋅Τ ⋅ ,  

Note that (20) and (21) are valid also in case 0, ,k
n n kΦ = ∀ , 

i.e., when an externally-distributed CTR is deployed all over 
the network. 
□ 
Moreover, adding an extra queue avoids concurrent reading 

and writing access to memory, thus eliminating the need of a 2 
speed up of memory access speed, which can result in a 
significant cost cut for high speed interfaces: 
 ( )( 1) ( 1) 1n n n n nBuff f Rα β∗

− −′ = + + + ⋅Τ ⋅ . (24) 

Lemma 1. Lossless PF with a network-distributed CTR on the 
path { }HNNN ,...,, 10  is ensured by deploying on the output 
interface of each node nN  a buffer of size: 

max max max max
1 1 1n n n n

n
Tt TeBuff f Rφ φ− −⎛ ⎞⎡ ⎤Δ + Δ + Δ + Δ

= + + ⋅Τ⋅⎜ ⎟⎢ ⎥⎜ ⎟Τ⎢ ⎥⎝ ⎠
. (25) 

Proof. By substituting ( 1)n nα ∗
− as derived from (16) in (23) 

and considering that either ⎡ ⎤ ⎡ ⎤ ⎡ ⎤yxyx +=+  or 
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 1++=+ yxyx , in the most conservative case the number 
of queues guaranteeing lossless PF operation according to (23) 
is 

 
max min max min max min

1 1 ( 1) ( 1) 1n n n n n n n n
TF

D DN f− − − −⎡ ⎤Φ − Φ + Φ − Φ + −
= + +⎢ ⎥Τ⎢ ⎥

. 

Further considering the definitions given in (1), (2), (4), and 
(6) we obtain 

 
max max max max

1 1 1n n n n
TF

Tt TeN fφ φ− −⎡ ⎤Δ + Δ + Δ + Δ
= + +⎢ ⎥Τ⎢ ⎥

. (26) 

The corresponding amount of buffering can be derived by 

 
6 As it is common in router implementations, an additional transmission 

buffer of size R⋅Τ  is provided at the lower protocol layer to store packets as 
they get transmitted. 
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considering the amount of bits that can be transmitted during 
one TF, i.e., R⋅Τ . 
□ 
From (25) it can be observed that  

1) Buffering at a node nN  depends on the maximum 
variation of timing parameters — specifically the 
synchronization error and the input latency at the node 
(i.e., max

nφΔ  and max
nTeΔ ) and the synchronization error 

and the output latency at the previous node on the 
forwarding path of the packet (i.e., max

1nφ −Δ  and max
1nTt −Δ ) 

— and not on their absolute values. 
2) Buffering (as well as the forwarding TF) at a generic 

node nN  depends on timing parameters at both the node 
itself and the previous node 1nN −  on the path of the 
packet. It can thus be concluded that in order to guarantee 
lossless service in a PF node nN  each output interface 
must be equipped with a buffer of size:  

max max max max

, ,
max max

1 .m n m n
m m n n

m N A m N A
n

Tt Te
Buff f R

φ φ
∈ ∈

⎛ ⎞⎡ ⎤Δ + Δ +Δ +Δ
⎜ ⎟⎢ ⎥= + + ⋅Τ⋅⎜ ⎟⎢ ⎥Τ⎜ ⎟⎢ ⎥⎝ ⎠

  (27) 
The above is derived by generalizing (25) to take into account 
the neighbor featuring highest variability of its timing 
parameters. 

D. Delay and jitter analysis 
A comparison of (14) and (16) shows that the 

synchronization error impacts directly on the delay introduced 
by each node, i.e., simple and low accuracy network-
distribution of the CTR is possible at the expenses of 
increased end-to-end delay and jitter. By analyzing (5) and (6), 
it can be noted that such increase grows with the number or 
nodes through which the CTR is distributed, i.e., the sparser 
S3s, the higher the end-to-end delay and jitter introduced by 
the network on an average flow. In particular, the time spent 
by a packet in the output queue of a PF node varies between 0 
(when the packet arrives just before the beginning of its 
forwarding TF) and ( )max k k

n n
k

o ib−T T , as given by (22). The 
maximum jitter J experienced by the packet through a PF 
network is given by the maximum time spent in the buffer of 
the last node on its path{ }HNNN ,...,, 10 , i.e., from Theorem 2 
and (22): 

 ( )( 1)( 1) H HH HJ fα β∗
−−= + + ⋅ Τ . (28) 

Furthermore, the total maximum buffering delay experienced 
by a packet along the path { }HNNN ,...,, 10  is 
 ( )0 0maxH Hk k

hh hh hk
o ib Buff R= =− =∑ ∑T T . (29) 

E. Discussion 
Previous subsections gave the guidelines to implement PF 

when the CTR is distributed through the network with 
arbitrarily low accuracy. Equations (16) and (27) provide the 
guidelines to dimension a network node so that proper 
operation is guaranteed by keeping into account maximum and 
minimum synchronization error at each node. While 
synchronization over a traditional packet network is 

significantly affected by queuing delay, which is hard to 
bound and estimate, over a PF network with the proposed 
CTR distribution method, the main causes for the 
synchronization error k

nΦ  at a generic node nN  are (i) non-
zero propagation delay, (ii) non-zero packet processing time of 
transmission and reception modules, and — especially — (iii) 
their variability that depends on issues ranging from hardware 
components, to system architecture, to software 
implementation.  

Providing a reliable estimate of the minimum 
synchronization error is not critical as it could in principle be 
set to 0 or, when the contribution of the propagation delay is 
significant (i.e., in a long haul link scenario), to the 
propagation delay. Also providing an upper bound on the 
variation of the propagation delay, which is due to temperature 
fluctuations caused by changing weather conditions or wear 
and tear of the medium, is not critical. Propagation delay 
variations can be accounted for by allowing a safety margin of 
k TFs in the forwarding delay. k depends on the TF duration, 
is likely to be 1 in most practical cases, and anyway does not 
have a significant impact on the end-to-end delay because the 
propagation delay variation is much smaller than packet 
processing delay and the other components of the 
synchronization error. 

The packet processing time introduced by 
hardware/software modules that perform transmission, 
reception, and handling of packets (such as the PCI bus or the 
Ethernet NIC in the PC-based prototype deployed in the 
experiments reported in the following section) is more critical 
as it has significant relative and absolute variations. However, 
proper design and implementation of the router can ensure 
such time to be bounded and its value can be devised based on 
either the system design or experimental characterization 
though specifically targeted lab tests and measurements.  

Since in the implementation used in this work the 
synchronization signal is conveyed in network layer packets, 
their transmission delay also contributes to the 
synchronization error. Although varying, this is not critical as 
it is obviously bounded by the time required to transmit a 
Maximum Transmission Unit (MTU) as defined for the 
specific data link protocol deployed. 

If the forwarding delay resulting from an estimate of the 
maximum synchronization error is not appropriate, the 
deterministic operation of PF is affected. Deployment of a 
more sophisticated CTR distribution solution, e.g., deploying a 
local clock to smooth out the variations of the synchronization 
error, would ensure that it stays within the estimate, hence 
ensuring deterministic operation with the proposed modified 
PF operation. Moreover, the disruption of the deterministic 
service is temporary and proper operation is automatically 
resumed after the first TF not fully utilized to transmit 
pipelined packets, as ensured by the proposed PF algorithm 
for low accuracy CTR. 

Improvements to the proposed CTR distribution solution 
are possible at the expense of increased complexity to: 
• Reduce the synchronization error, and consequently 

packet delay and jitter resulting from PF (which Section 
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IV.D showed to be dependent on the synchronization 
error);  

• Avoid deterministic service being disrupted if the 
estimate on the maximum processing and propagation 
delay, i.e., on the maximum synchronization error, is 
exceeded; 

• Ensuring proper CTR distribution and seamless PF 
operation in case of link and nodes failures.  

For instance, the timing information received from all the 
input links of a node could be used as synchronization signals, 
along the lines of the solution proposed in [19]. Alternatively, 
a local clock synchronized with the synchronization signals by 
means of a phase locked loop (PLL) could be deployed. 
However, this is outside the scope of this paper that aims at 
showing how PF, with minimal changes to the original 
algorithms, can properly operate with a low accuracy CTR, 
even if distributed through the network with a low complexity 
protocol. A major outcome of this section is the general 
validity, i.e., with any synchronization mechanism, of the 
proposed modifications to the original PF algorithms and 
system dimensioning as expressed by (16) and (27). However, 
an analysis of the performance and properties of PF with more 
sophisticated (and more complex) CTR distribution solutions 
is left for future work. 

V. EXPERIMENTAL RESULTS 
Some experiments were run on a testbed of TDP routers 

implemented by 2.4 GHz Pentium IV PCs running a modified 
version [10] of the FreeBSD 4.8 routing software. The results 
demonstrate the effectiveness of the CTR distribution solution 
proposed in Section III.D and validate the analysis of the 
modified PF operation presented in Section IV. Results 
obtained from the experiments are then extended to a large 
scale network by applying the equations proven in Section IV, 
which demonstrates the feasibility and the effectiveness of the 
proposed method in an arbitrary network. 

A. Synchronization Error Measurement 
If the proposed CTR distribution method is used, the main 

causes for synchronization error are propagation delay, packet 
processing time, and their variability that in our PC-based 
router is due to (i) access to shared resources, such as CPU, 
memory, communication buses, etc. and (ii) the interrupt-
driven nature of the FreeBSD kernel. Thus, the resulting 
synchronization error is in this case expected to be particularly 
large and variable under high traffic load. However, this 
provides a good reference point as it can be considered as a 
worst case scenario in which to experiment with the proposed 
solution. In fact, special purpose routers usually deployed in 
real networks are designed to minimize packet handling time 
and, consequently, its variations.  

A first set of experiments was run to measure the various 
system latencies and devise the synchronization error 
components introduced by our prototypal network nodes in 
order to get an idea of its order of magnitude. Fig. 4 shows the 
measurement setup. An Agilent N2X Router Tester is used to 
generate a traffic flow that enters TDP router R1, is forwarded 

to TDP router R2, and then is routed back to the router tester, 
all across FastEthernet links (100 Mb/s). In this first set of 
experiments, R1 and R2 execute the TDP scheduling 
algorithm with an externally-distributed CTR that is acquired 
through a GPS receiver, i.e., TFs on both routers are aligned 
with UTC. Time from the GPS receivers is also used to 
measure the interval between the beginning of a packet 
transmission at the TDP scheduler on R1 until the packet is 
processed at the IP layer (i.e., where the DS field is processed) 
on R2. In a network-distributed CTR scenario in which R1 is 
an S3 and the interface of R2 toward R1 is its S3P, the 
measured time interval represents the synchronization error at 
R2, which includes the various contributions identified in 
Section III.B, specifically 
 2 1 2 1 2 1 2R R R R R R RTp Tt Te Tt TeΦ = + + + Δ + Δ , (30) 

where 21RRTp is negligible for all purposes having used a short 
cable between the routers stacked one on top of the other. 

Router Tester
R1 R2

GPS

 
Fig. 4. Synchronization error evaluation testbed. 
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Fig. 5. Potential synchronization error distribution. 

Fig. 5 plots the distribution of the synchronization error that 
the prototypal router potentially introduces. The various 
components of the synchronization error are measured over 
100 test runs with fully loaded links and various packet 
lengths. In particular, the router tester generates ten 10 Mb/s 
CBR UDP flows with constant message size on its port 
connected to R1 fully loading (as a 100 Mb/s aggregate flow) 
the links. The size of the IP packets is varied in each test run; 
sample configurations include: all flows deploying the 
minimum size of 64 bytes (corresponding to about 20000 
offered packets per second), all flows deploying the maximum 
size of 1500 bytes (about 800 packets per second), all flows 
deploying different packet sizes variably chosen between the 
above minimum and maximum. Each test lasts 15 minutes, 
hence the number of observed packets ranges between about 
720 thousands and about 18 millions. The maximum and 
minimum synchronization errors measured are 

 
min min

2
max max

2

7 μs,
480 μs.

R

R

Φ = Φ =
Φ = Φ =

 (31) 
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In order to properly configure the forwarding delay and 
buffering space in all nodes of the testbed network deployed 
for the experiments reported in Section B, the synchronization 
error at each node should be devised. Since all nodes are based 
on the same architecture and all links have the same length, 
measurements done on one of the nodes are in all likelihood 
representative of all the others. Consequently, the 
synchronization error at a node d hops from the S3 on the 
synchronization path can be derived from (4) considering that 
each of the d upstream nodes features a synchronization error 
characterized according to (31): 

 
min min

max max .
d

d

d
d

Φ ≈ ⋅ Φ
Φ ≈ ⋅ Φ

 (32) 

B. Experiments with Network-distributed CTR 
Fig. 6 shows the network testbed deployed in the 

experiments that involves 4 TDP routers connected by 
100 Mb/s Ethernet links with 250 μs TFs (i.e., 250 μsΤ = ). 
R1 acquires UTC from the GPS and is an S3; R2, R3, and R4 
acquire the CTR through the network using the CTR 
distribution solution (Section III.B and Section III.D) 
presented in this paper. Each router should select as S3P its 
interface connected to R1 in order to minimize the network 
synchronization error. However, since the presented 
experiments aim at assessing CTR distribution over multiple 
hops — as it would be in a real work network — S3Ps have 
been selected differently and are identified by a solid circle in 
Fig. 6. 

For the sake of brevity and without loss of generality, only 
experiments with TDP immediate forwarding (i.e., 0=f ) 
are reported here. The forwarding delay for each input 
interface and the buffer size required on each output interface 
is derived from (16) and (27), respectively, by using the 
network synchronization error figures devised with the first set 
of experiments — i.e., (31) and (32). Since all nodes are based 
on the same architecture and all links have the same length, 

( 1)n nα −  is the same for every pair of nodes in the testbed and, 
from (13), max max

( 1)n nD − = Φ , min min
( 1)n nD − = Φ , and, consequently, 

max max max min , ,m n m nTt Te m N AΔ + Δ = Φ − Φ ∀ ∈ , where nA  is the 
set of nodes directly connected to nN . Although not necessary 
in a PC-based mono-processor router, the additional buffering 
to avoid concurrent read/write access as specified in (24) was 
also considered so that experiments are run with the worst 
case delay scenario. The resulting system parameters are 
summarized in Table I. The detailed calculation of the 
parameters of R2 is reported in the following as an example. 

• Forwarding delay. R1 acquires UTC from the GPS, 
hence max

1 0RΦ = . From (31) and (32), min
2 7 μsRΦ =  and 

max
3 2 480 960 μsRΦ = ⋅ = . Furthermore, as described 

above, max max
1 2 3 2 480 μsR R R RD D= = . This leads to 

 
max min max

1 2 1 2
1 2

R R R R
R R

Dα ∗ ⎡ ⎤Φ − Φ +
= =⎢ ⎥Τ⎢ ⎥

2 TF, 

 
max min max

3 2 3 2
3 2

R R R R
R R

Dα ∗ ⎡ ⎤Φ − Φ +
= =⎢ ⎥Τ⎢ ⎥

6 TF. 

• Buffering. Among the nodes directly connected to R2, 

R3 is affected by the largest synchronization error 
( ( )max max min

3 3 3 2 480 7 946 μsR R RφΔ = Φ − Φ = ⋅ − = ), hence 
from (27) it can be derived: 

max max max min
3 2

2 1 28125 bytesR R
RBuff Rφ φ⎛ ⎞⎡ ⎤Δ +Δ +Φ −Φ

= + ⋅Τ⋅ =⎜ ⎟⎢ ⎥⎜ ⎟Τ⎢ ⎥⎝ ⎠
 

and, from (24), 
2 2 31250 bytesR RBuff Buff R′ = + Τ⋅ = . 
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Fig. 6. Testbed 

 
TABLE I 

FORWARDING DELAY AND BUFFER SIZE 

Router Input NIC Forwarding Delay [TF] Buffering [byte] 
1 4 
2 6 R1 
3 8 

31250 

1 2 
R2 

2 6 
31250 

1 4 
2 2 R3 
3 8 

43750 

1 6 
R4 

2 2 
43750 

TABLE II 
MAXIMUM JITTER WITH A NETWORK-DISTRIBUTED CTR 

Traffic Flow Max measured [μs] Analytical bound [μs] 
A 730 1000 
B 916 3000 
C 753 2000 

 
The router tester generates three 100 Mb/s UDP flows on 

the Gigabit Ethernet link to R1. Since the three flows are 
routed as shown by the dotted lines in Fig. 6, each link links 
between TDP routers is fully loaded. In order to simplify 
resource reservation (manually performed in our prototypal 
implementation) and without loosing in generality, packet size 
is programmed to periodically vary among the four pre-
defined values 64 bytes, 260 bytes, 625 bytes, and 1041 bytes, 
which result in 48, 12, 5, and 3 packets contained in each TF, 
respectively. The paths of the three flows realize every 
possible scenario a node can be faced with concerning the 
relation between data traffic and CTR distribution. For 
example, packets received by a node nN  from a node 1nN −  
where the synchronization error 1

k
n−Φ  is smaller/greater 

than k
nΦ , packets received from the S3P, etc. The jitter is 

measured on each flow (see Table II) during ten different tests, 
each one lasting 2 days. No packet is lost during the 
experiments and the jitter does not exceed its analytical upper 
bound given by (28), which validates the analysis presented in 
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Section IV7. As an example, the maximum measured jitter for 
flow A (730 μs) is smaller than the analytical bound 

4 1msJ = ⋅Τ =  obtained by substituting ( 1) 1 2 2TFH H R Rα α∗ ∗
− = =  

and ( 1) 1 2 2 TFH H R Rβ β− = =  ( 0=f  in all our experiments) 
in (28). 

C. Delay and buffering  
Due to the toy network on which they had been devised, the 

results presented so far do not demonstrate a large scale 
deployment of PF with a network-distributed CTR. However, 
they enable us to validate the presented analysis and devise 
synchronization error bounds for the prototype router that are 
given in (31). By applying (16), (27), and (29), the 
measurements on the testbed in Fig. 6 can be used to evaluate 
the buffering requirements and the maximum delay 
experienced by packets over an arbitrary network composed of 
PC-based prototypal routers. Assuming a network in which the 
maximum number of hops between any node and an S3 is D, 
the largest buffer size and buffering delay are the ones on a 
path traversing only routers at maximum distance D from the 
S3. Fig. 7 shows an example of such path, which we call the 
slowest path, for D = 3 hops that traverses 6 PF hops, i.e., 6 
links on which PF of packets is performed. 

Fig. 8 plots the maximum end-to-end buffering delay 
(devised using (29)) on a slowest path versus the number of 
hops H on the path for several values of D. The buffer size 
(reported in Fig. 10) is calculated according to the procedure 
detailed in Section V.B (the additional buffer to avoid 
concurrent read/write access, as discussed in Section IV.C, is 
not considered here) noticing that, according to (31) and (32), 
the maximum and the minimum synchronization errors of 
nodes at a distance D from the S3 are maxD ⋅Φ  and minD ⋅Φ , 
respectively. The maximum end-to-end buffering delay is 
devised by applying ( )H HBuff R⋅ , derived from (29) by 
considering that hBuff  is the same for every node hN  in the 
path as all nodes are at distance D from the S3. For example, 

maxD 1.44 ms⋅Φ =  and minD 21μs⋅Φ =  if D = 3 and maxΦ  
and minΦ  assume the values devised for our prototypal router 
and provided by (31). Hence, the buffering delay experienced 
after H = 5 hops by a packet traveling on a path whose nodes 
are at distance D = 3 from the S3 is equal to 

( )5 (1419 1419 473) 1 18.75ms⋅ + + Τ + ⋅Τ=⎡ ⎤⎢ ⎥ . 
Considering that the total end-to-end delay includes in 

addition propagation delays, we set the maximum acceptable 
end-to-end buffering delay to be 50 ms (dashed line). Fig. 8 
shows that only small distances from the S3 (i.e., low values 
of D) can guarantee this bound on slowest paths composed by 
a reasonable number of hops. For example, if D = 5, packets 
can traverse 9 slowest path hops before exceeding the 50 ms 
bound, which is a reasonable path length. However if D = 11 
the maximum number of hops on the slowest path is only 4 
before exceeding the delay budget, which is unreasonable in 
practical networks. Nevertheless, in an access network where 
 

7 The presented experiments focus on assessing exclusively PF operation 
with network-distributed CTR and the CTR distribution solution presented in 
this paper. A general evaluation of PF, its properties, and benefits stemming 
from its deployment are outside the focus of this paper and were object of 
previous work (see for example [6],[7]–[11]). 

low end routers such as the deployed PC-based prototypes 
might be used D = 5 is a realistic value. Reasonably assuming 
that each service provider deploys an S3 in its network, the S3 
is going to be within a limited number of hops (reasonably less 
than 5) from end-users. Hence, the presented results show how 
the proposed solution enables the PF technology to reach also 
the extreme edge of the network with low cost, not specifically 
designed nodes — such as a PC-based router. 

S3

Source

Destination

D = 1

D = 2

D = 3

 
Fig. 7. Slowest path 

However, these results somehow represent a worst case 
scenario as they refer to a low performance (from both the 
software and hardware viewpoint) prototypal router. In fact, 
high performance commercial routers have maximum packet 
handling latency of few μs. For example, the maximum packet 
handling latency measured on a Juniper Networks T640 core 
router [20] during a zero-loss test with small FIFO buffers and 
no route-lookup delays (no routes present in the router), is 
about 50 μs. Although this test has been designed to avoid 
long buffering and lookup delays, the measured latency 
includes delays related to some functions — such as 
processing, switching, and buffering — that do not affect the 
synchronization accuracy in a PF network, but give the largest 
contribution to packet latency. Consequently, it is reasonable 
to assume that the latency of functions affecting the 
synchronization accuracy, i.e. packet transmission and 
reception, does not exceed 10 μs. This results in a lower 
synchronization error in each node and consequently in lower 
delay, jitter, and buffering requirement when compared to our 
prototype routers. Fig. 9 presents an estimate of the maximum 
end-to-end buffering delay if high performance low latency 
routers are used. TF duration is set to 50 μs, which is a 
suitable value for high performance routers connected with 
high speed links (i.e., 10 Gb/s). Fig. 9 shows that, with D = 11 
and 20 hop paths, the maximum end-to-end buffering delay is 
about 5 ms, thus a small fraction of the 50 ms bound. 

Fig. 10 plots the amount of buffering nodes require versus 
the distance D from the S3, We have considered both our TDP 
router prototype with 100 Mb/s ports and a high performance 
router with 10 Gb/s ports. Results show that the buffer size 
ensuring loss avoidance is limited for both types of routers, 
even if nodes are D = 11 hops far from the S3. The buffer size 
required by the high performance router (solid line in Fig. 10) 
is roughly three orders of magnitude smaller than the one 
adopted in current asynchronous routers operating (with loss) 
according to the DiffServ model. The limited memory 
requirement is extremely important for the realization of so 
called terabit routers as buffers of very high capacity ports 
must have high memory access bandwidth, which at the 
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current state of the art implies very high per-byte cost. Buffer 
size as given by Theorem 2 also implicitly defines the upper 
bound on the per-node jitter (that is also the end-to-end jitter 
because with PF jitter is not additive along the path to the 
destination), as given by (28). The solid curve in Fig. 10 
shows how high performance commercial routers can ensure a 
low jitter even with a network-distributed CTR on a large 
backbone. For example, with D=11 (i.e., nodes as far as 11 
hops from an S3), the jitter is about 300 μs (i.e., 6 TFs). As 
shown by the dotted line in Fig. 10, also low cost PC-based PF 
routers can guarantee acceptable jitter, such as 24 TFs or 6 ms 
when D=5, i.e., when the synchronization signal travels a 
limited number of hops to reach every node. This further 
demonstrates the feasibility of implementing and deploying PF 
with a low accuracy CTR, possibly distributed through the 
network with a very simple protocol such as the one proposed 
in this work. Specifically, the feasibility is demonstrated on 
both a low cost, low performance router platform, such as a 
PC, on an access network, and on a high end commercial 
router on a large backbone. 

VI. CONCLUDING REMARKS 
This paper analyzes how Pipeline Forwarding (PF) of 

packets can be based on a low accuracy Common Time 
Reference (CTR) distributed through the network. A CTR 
distribution solution aiming at simplicity and ease of 
implementation, possibly by adding a software-only module to 
existing devices, is also presented. The analytical work and 
experiments validate both the proposed synchronization 
solution and the PF modifications to enable its operation with 
a low accuracy network-distributed CTR, thus demonstrating 
its feasibility and applicability to both large scale, high speed 
networks where minimum buffering requirements are of 
utmost importance and access networks where low end routers 
might be deployed.  

The experimental results presented in the paper are obtained 
with a TDP router prototype. Although they could seem poor 
at first sight, they are in fact very significant: the simplicity of 
the deployed algorithms, for both packet scheduling and 
synchronization distribution, enables their software-only 
implementation in low cost architectures, such as PCs, thus 
making them capable of providing guaranteed quality of 
service. Such low cost routers provide acceptable delays only 
in scenarios where synchronization is distributed through a 
small number of hops and paths through the network are not 
too long, such as, for example, access networks. In such 
scenario, a low complexity, software-only implementation of 
both PF and CTR distribution is key to enable PF deployment 
in home gateways and wireless access points. In fact, devices 
available in that market segment are currently not equipped 
with local clocks that might be dedicated to the 
implementation of the CTR. Moreover, even if PF became 
more widely adopted, it might not be cost effective to include 
ad-hoc hardware in low-end equipment. On the other hand, the 
paper argues that implementation of PF with network-
distributed CTR in high-end commercial routers is suitable for 
global scale operation.  

The service guarantees, and especially the scalability 
featured by PF, cannot be achieved by other existing 
technologies: asynchronous packet scheduling fails in 
guaranteeing quality of service without underutilizing network 
resources (i.e., without performing resource overallocation), 
while synchronous techniques like Sonet/SDH require 
complex architectures and very accurate synchronization (e.g., 
a PC-based implementation is unthinkable of). 
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Fig. 8. Maximum end-to-end buffering delay on the slowest path 
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Fig. 9. Estimated maximum end-to-end buffering delay with high performance 

commercial routers ( min
iΦ = 1μs, max

iΦ = 10μs, Τ = 50μs) 

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11
D [hop]

B
uf

fe
r S

iz
e 

[K
B

]

Φmin = 7μs, Φmax = 480μs,
T = 250μs, Link 100Mb/s

Φmin = 1μs, Φmax = 10μs,
T = 50μs, Link 10Gb/s

 
Fig. 10. Buffering requirement 

Given that forwarding delay, buffering requirement, and 
jitter are dependent on the synchronization error — the latter 
two on its variation, as shown by (27) — minimizing it, and 
especially its variations, is essential. Work can be done in this 
respect in at least two complementary directions: (i) reducing 
latencies in network nodes and (ii) limiting the maximum 
number of nodes through which the CTR is distributed. 

Regarding the first issue, work is ongoing to improve the 
performance of the TDP router prototype. Fig. 5 shows that 
the variable component of the synchronization error in the 
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presented experiments is less than one TF for most packets. 
The higher latencies randomly observed stem from both 
hardware architecture and operating system designed for 
general purposes and not therefore optimized for PF operation. 
Although, as mentioned earlier, the TDP router prototype is 
not fully representative or optimized commercial routers, work 
on its improvement as PF node can provide experience and 
insight into general implementation issues. Preliminary results 
after modifying the FreeBSD kernel in this direction are very 
promising. 

In order to limit the number of nodes through which the 
CTR is distributed a network can be divided in 
synchronization areas, each one equipped with an S3 from 
which network nodes derive the CTR. Such areas can be 
identified dynamically through the protocol for the 
construction of the synchronization tree according to various 
criteria. For example, in a scenario in which OSPF is used for 
distribution of routing information, it could be also used for 
the construction of the synchronization tree and 
synchronization areas can coincide with OSPF areas. The 
design of a protocol for the construction of the 
synchronization tree, also supporting the identification of 
synchronization areas and reconfiguration in case of failure, is 
the object of additional study that will also address the impact 
on existing schedules of changing S3 and S3P. 
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