
 1

 Abstract—Pipeline forwarding is a technology with the
capability of providing both guaranteed quality of service and
scalability, two fundamental properties for the future Internet.
Implementing pipeline forwarding requires network nodes to
operate with a common time reference that in existing literature
is considered to have relatively good accuracy and usually be
derived from an external source, such as the GPS or Galileo. This
is a major requirement possibly hindering the widespread
deployment of this technology notwithstanding its potential to
enable a host of new applications. This paper describes and
analyzes a solution for realizing pipeline forwarding based on a
low accuracy common time reference distributed through the
network and presents experimental results obtained with a
prototypal implementation of the proposed solution.

Index Terms—pipeline forwarding, packet scheduling,
distribution of a common time reference, network
synchronization, experiments on a network testbed

I. INTRODUCTION
RAFFIC over the Internet continues to grow steadily. In

particular, the percentage of traffic requiring quality of
service (QoS) in terms of end-to-end delay and jitter has been
increasing during the last few years. For example, some
applications, such as multimedia ones, need a minimum level
of service quality in order to operate properly.

Current approaches to offer controlled quality based on the
Differentiated Services (DiffServ) model [1] combined with
over-provisioning of resources cannot withstand a significant
increase in the fraction of traffic with QoS requirements due to
a combination of the following factors:
• Current approaches rely on the fundamental assumption

that differentiated traffic must use only a small fraction of
the network capacity. Consequently, the additional
network capacity needed when traffic with QoS
requirements grows is larger than the increase in (revenue
generating) traffic.

• Given that there are many indicators of technology having
reached a point where it does not follow any more Moore’s
Law of a tenfold increase every 18 months, the additional
processing and switching capacity required to follow the
steep growth curve of Internet traffic with QoS
requirements has a high cost.

• In a possible future scenario in which traffic with QoS
requirements might dominate the Internet, the excess

Authors are with Dipartimento di Automatica e Informatica, Politecnico di

Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy; e-mail:
{mario.baldi, guido.marchetto}@polito.it.

network capacity stemming from over-provisioning is
likely to remain unused — i.e., not to yield any revenue.

In essence, the upgrade that a network infrastructure relying
on the above approaches should undergo in order to support
such traffic increase is most likely to result in costs larger than
the economic benefits, i.e., additional revenue brought by such
services. Hence, a solution that relies on a more efficient
utilization of network resources, i.e., allowing for traffic with
QoS requirements to use a large percentage of network
capacity, is needed.

On the other hand, approaches based on the Integrated
Services (IntServ) model [2], although somewhat more
efficient in the utilization of network resources, have proven
not to scale due to the high complexity and processing
requirements associated with packet scheduling algorithms,
such as packet-by-packet generalized processor sharing
(PGPS) [3], a.k.a. weighted fair queuing (WFQ), combined
with the need for their per-flow deployment. Moreover, PGPS
and other similar well known scheduling algorithms [4][5],
such as, class based queuing, weighted round robin and others,
cannot combine optimal delay and resource utilization
efficiently (see detailed discussion in [6]).

In summary, existing asynchronous packet scheduling
approaches either require (very) large amounts of network
resources or cannot scale to high performance (multi-terabit)
routers and switches. Pipeline Forwarding (PF) is a packet
scheduling technique that can satisfy such requirements thanks
to its unique combination of simplicity and effectiveness by
deploying a global common time reference (CTR) for shaping
the traffic through the network. PF provides guaranteed
quality of service and scalability, as it has been extensively
studied both analytically and through simulations (see for
example [7]–[9]) and experimentation [10][11]. PF properties
basically stem from the predictability it introduces in network
operation, hence on the service offered to packets traversing it.
PF is currently deployed in an experimental testbed
interconnecting Turin, Milan, and Trento, the impact of its
hypothetical deployment in the network of an Internet Service
Provider such as Telecom Italia has been assessed in the
context of a project sponsored by Telecom Italia Labs [12],
and its market potential as a commercial application of the
Galileo positioning system has been evaluated in the context
of the Harrison Project funded by the Galileo Supervisory
Authority.

Also S&G Queuing [13] uses a time reference to drive
packet forwarding in routers with FIFO-like scheduling

Pipeline Forwarding of Packets based on a Low
Accuracy Network-distributed Common Time

Reference
Mario Baldi, Member, IEEE, and Guido Marchetto, Member, IEEE

T

 2

complexity — i.e., the solution has the potential to scale to
high performance architectures. However, S&G Queuing
relies on a “per link” time reference derived from the
transmitter end independent local clock. The variable drift of
clocks used on various input links at a router can lead to the
impossibility of maintaining the timing profile characterizing
traffic at the network edge, which eventually results in
variable delays, jitters and, in the worst case, buffer overflows
and packet loss.

Instead PF is based on a time reference (CTR) common to
all network nodes. Since in much previous work, including
prototypal implementations, the CTR is derived from UTC
(coordinated universal time), the technology is often referred
to as UTC-based pipeline forwarding. If UTC is provided
through an external channel (e.g., Global Positioning System
(GPS) is used in the prototypes described in [10] and [11]) the
system is said to be based on an externally-distributed CTR. If
an inter-switch synchronization protocol is used to distribute a
timing signal through the network (as proposed in [8], for
example), the system is said to be based on a network-
distributed CTR. In both cases, original PF operating
principles (as defined in [8]) imply that the CTR error in
different nodes be smaller than the PF operation time unit,
which is called a time frame (TF). Relying on such an
accurate (either externally or network distributed) CTR is a
major requirement on network nodes and network operations
that some see as a hurdle with the potential to hinder PF
deployment. This motivates this work that proposes, analyzes,
and reports on experiments with a PF implementation
supporting a low accuracy network distributed CTR.
Specifically, this paper makes the following contributions: (i)
a solution for CTR distribution with minimum impact on
system complexity is defined, (ii) a set of operational rules to
ensure proper PF operation with CTR error larger than one or
more TFs is specified, (iii) resulting buffering requirements
are devised, and (iv) consequences on the quality of the
service provided in terms of delay and jitter are analyzed.
Notice that although in this work (ii), (iii), and (iv) are devised
assuming the synchronization model underlying the CTR
distribution solution at (i), they can be straightforwardly
generalized to various CTR distribution alternatives, i.e., their
relevance is not limited to the proposed CTR distribution
solution. In essence, the paper shows how minimal changes to
the PF algorithm originally proposed enable proper operation
with a low accuracy network-distributed CTR. Although the
proposed changes to PF are minimal — which contributes to
the relevance of this work since they do not affect the system
complexity — they have a major impact because PF
deployability is greatly improved. In particular, given that the
proposed CTR distribution solution can be implemented by a
low complexity software module, this work facilitates PF
deployment in low end network nodes, such as at the wired or
wireless edge of the network. This is key to take full
advantage of PF in terms of guaranteed QoS as its benefits can
be fully enjoyed when it is deployed end-to-end [6].

After a short description of PF and its deployment options
(Section II), the paper discusses network synchronization

issues in general (Section III.A), outlines the basic principles
of the synchronization solution proposed for the distribution of
the CTR through a network (Section III.B). In fact,
Section III.B also sets the context for this work: a stable
network scenario, i.e., changes in the availability of links and
nodes (e.g., due to failures) are not taken into consideration
here. Section IV analyzes the impact of a network-distributed
CTR on the implementation and deployment of the PF
scheduling algorithm. Various options for the distribution of
the CTR and a proposed protocol are discussed in Section III,
while experimental results on a testbed implementing the
proposed solution are presented in Section V. The outcome of
this work and future work directions are finally discussed in
Section VI.

II. UNDERLYING PRINCIPLES AND TECHNOLOGIES
As the context of this work is a network performing

Pipeline Forwarding (PF) of packets, this section briefly
introduces this technology and its deployment options. An
extensive and detailed description of pipeline forwarding is
outside the scope of this paper and is available in the
literature [7]–[9].

A. Pipeline Forwarding
In PF all packet switches utilize a basic time period called

time frame (TF). The TF duration Τ may be derived, for
example, as a fraction of the UTC second received from a
time-distribution system such as the GPS and, in the near
future, Galileo. As shown in Fig. 1, TFs are grouped into time
cycles (TCs) and TCs are further grouped into super cycles;
this timing structure aligned in all nodes constitutes a CTR.
Each super cycle might last one UTC second like, for
example, in Fig. 1, where the 125-μs time frame duration Τ is
obtained by dividing the UTC second by 8000; sequences of
100 time frames are grouped into one time cycle, and runs of
80 time cycles are comprised in one super cycle (i.e., one UTC
second).

CTR from UTC
(Coordinated

Universal Time)

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 79

Super-cycle 0
with 8k Time-frames

0
beginning
of a UTC second

1
beginning
of a UTC second

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 79

Super-cycle m
with 8k Time-frames

T T T T T T T T T T T

Fig. 1. Common time reference structure

During a resource reservation phase TFs are partially or
totally reserved for each flow on the links of its route. Thus,
TFs can be viewed as virtual containers for multiple packets
that are switched and forwarded according to the CTR. In the
PF deployment in the literature, the TC provides the basis for
a periodic repetition of the reservation, while the super cycle
offers a basis for reservations with a period longer than a TC.
In another possible deployment the reservation phase can be
done on the fly before transmitting a packet without
necessarily maintaining it across multiple TCs.

A signaling protocol must be chosen for performing
resource reservation and TF scheduling, i.e., selecting the TF
in which packets belonging to a given flow should be

 3

forwarded by each router. Existing standard protocols and
formats should be used whenever possible. Many solutions
have been proposed for distributed scheduling in pipeline
forwarding networks [7] and the generalized MPLS (G-
MPLS) control plane provides signaling protocols suitable for
their implementation. In the traditional traffic management
models for QoS support, such as ATM User-Network
Interface and Integrated Services, applications signal their
QoS requirements to the network for each flow (usually called
microflow); queuing algorithms used in asynchronous packet
switches have to maintain status information for each micro-
flow, which is not scalable. Pipeline forwarding does not
require per-micro-flow status in intermediate nodes, thus
having similar provisioning scalability as the DiffServ model,
where micro-flows are aggregated in the network to improve
scalability [14].

The basic pipeline forwarding operation as originally
proposed in [7] and [8] is regulated by two simple rules: (i) all
packets that must be sent in TF k by a node must be in its
output ports' buffers at the end of TF 1k − , and (ii) a packet p
transmitted in TF k by a node nN must be transmitted in TF
k α+ by the following node 1+nN , where α is a predefined
integer called forwarding delay, and TF k and TF k α+ are
also referred to as the forwarding TF of packet p at node nN
and node 1+nN , respectively. It follows that packets are timely
moved along their path and served at well defined instants at
each node. Nodes therefore operate as they were part of a
pipeline, from which the technology’s name is derived.
Consequently, given the TF at which a packet enters the
network, the time at which the packet is forwarded by each
node and eventually reaches its destination is known in
advance with the accuracy of one TF.

The value of the forwarding delay is determined at
resource-reservation time and must be large enough to satisfy
(i). Note that the time a packet requires to go from the output
buffer of a node to the output buffer of the following one is
strictly dependent on the performance of both nodes and the
distance between them. Thus, the minimum value acceptable
for α could vary depending on the previous hop from which a
packet is received. Defining nA as the set of the neighbors of

nN , a set of different minimum acceptable forwarding delays
, :nm m nm N Aα ∈ have to be defined for nN .

PF guarantees that reserved real-time traffic experiences: (i)
bounded end-to-end delay, (ii) low delay jitter independent of
the number of nodes traversed (less than two TFs when the
CTR accuracy is smaller than a TF [8]), and (iii) neither
congestion nor resulting loss.

B. Deployment Options
Time-driven priority (TDP) [8] is a synchronous packet

scheduling technique that enables combining PF with
conventional routing mechanisms to achieve high flexibility
together with guaranteed service. While scheduling of packet
transmission is driven by time, the output port can be selected
according to either conventional IP destination-address-based
routing, or multi-protocol label switching (MPLS), or any
other technology of choice. Within a TF packets can be

switched and forwarded asynchronously, i.e., in an arbitrary
order and to different output ports.

In Time-driven switching (TDS), originally proposed to
realize sub-lambda or fractional lambda switching (FλS) [9],
all packets in the same TF are switched in the same way, i.e.,
altogether to the same output port. Consequently, header
processing is not required, which results in low complexity
(hence high scalability) and enables optical implementation.

Although with a different degree of flexibility, both TDP
and TDS can handle non-pipelined (e.g., best-effort) packets
that can be transmitted during any unused portion of a TF,
whether not reserved or reserved but actually unused.

III. NETWORK SYNCHRONIZATION

A. An Overview
Several applications and technologies require network

synchronization for their operation. These requirements are
different depending on the specific environment. For example,
a distributed software system may require a time-of-day
synchronization in order to correctly perform transactions. The
Network Time Protocol (NTP) [15] is often used for this
purpose; it carries timing information deployed by a software
phase locked loop (PLL) that maintains time-of-day
synchronization by recovering the error on the system time
introduced by the limited accuracy of the local oscillator.
Current implementations of this type of network
synchronization are based on an application layer protocol
deployed by an application (daemon) process running on
clients. SONET/SDH, on the contrary, needs synchronization
at the physical layer in order to pace transmission of bits. The
timing signal is distributed directly at the physical layer as
defined by specific ITU standards.

TDP uses a CTR to determine when to transmit packets,
i.e., packets must be sent out in predefined time-slots uniquely
identified throughout the whole network. Similarly, in TDS a
CTR is deployed by all switches across the network to
determine when to change their input-output interconnections.
In particular, in a PC-based implementation of a TDP
router [10], a periodic UTC-aligned signal generated (as an
interrupt on the PCI bus) by a GPS receiver is used for
indicating the beginning of a new TF, i.e., it triggers the
transmission of packets scheduled for that TF. Analogously,
the switch controller of a TDS switch [11] prototypal
implementation uses a signal from a GPS receiver to trigger
the reconfiguration of the switching fabric at the beginning of
each TF according to a pre-defined, periodic pattern. Thus, PF
requires time-of-day (here represented by the number of a TF
within a TC) synchronization, which the GPS distributes with
very high accuracy. However, the use of the GPS requires the
deployment of GPS receivers (i.e., specific hardware) and the
availability of a properly positioned outdoor antenna. Thus, a
GPS-based synchronization solution is often impractical for
logistics and cost reasons that some see as a drawback with the
potential to hinder the deployment of PF. For these reasons
this work investigates PF operation based on a network-
distributed CTR.

Several network synchronization techniques have been

 4

proposed, including the aforementioned NTP and
SONET/SDH synchronization solution. Worth mentioning,
IEEE 1588 [16] and Synchronous Ethernet [17] have recently
been proposed specifically to provide synchronization in
packet switched networks. All these solutions aim at a very
high accuracy, which results in high complexity and, in the
case of SONET/SDH, the deployment of dedicated channels
for carrying synchronization signals. However, in this paper
we show (see Section IV) that, unlike circuit switching
technologies, like SONET/SDH, PF does not require high
accuracy in the realization of the CTR. In fact, since PF nodes
handle packets, buffering can be leveraged on to relax
accuracy requirements: an appropriate size buffer enables
correct PF operation by delaying packets based on the relative
accuracy of the time reference on neighboring nodes. For
example, if the time reference of an upstream node is early
with respect to its downstream neighbor, packets are buffered
in the latter until their forwarding time according to local time
reference. A late time reference of an upstream node with
respect to its downstream neighbor can instead be dealt with
by introducing a larger forwarding delay than required by the
nominal packet transfer time between the two nodes, which
implies additional buffering in the downstream node.
Section IV is devoted to devising how a PF node can be
dimensioned based on the CTR accuracy and proving that a
properly dimensioned system provides the benefits typically
offered by PF as originally defined in [7] and [8].
Consequently, the complexity of existing synchronization
distribution solutions required to achieve high accuracy is not
justified when aiming at PF deployment. For these reasons, a
customized, low complexity network synchronization solution
is desirable.

An inter-switch synchronization protocol proposed in [18]
was specifically adapted to PF in [8]. This solution, aimed at a
CTR error among nodes smaller than one TF, requires each
node to have a local clock to trigger the beginning of each TF.
The CTR distribution solution proposed in this work is based
on directly triggering the beginning of a new TF on a node
when a synchronization signal reaches such node. This
protocol is simple and effective as it (i) does not rely on a
local clock, hence enabling a (ii) software-only
implementation, (iii) provides the required time-of-day
synchronization, and (iv) does not require dedicated network
resources as the synchronization signal is piggybacked by data
packets. Being simple and not requiring specific hardware, the
proposed CTR distribution solution is particularly suitable for
the deployment in low end nodes, such as at the edge of the
network (e.g., home gateways and wireless access points). The
following subsections present and analyze this protocol and its
implications on the network synchronization.

B. Network Synchronization Model
The proposed method to achieve network synchronization

consists in nodes distributing a synchronization signal to their
neighbors that can be processed by receiving nodes and used
to trigger the beginning of TFs. Since a node could have
several neighbors, it could receive more than one timing

signal. One of the neighbors is to be selected as
synchronization source for the node. The selection of the
synchronization interface has to be done in such a way that
each node has a synchronization path to a predefined node that
acts as time server (i.e., a node that distributes a well defined
time reference at which it is synchronized and which becomes
the common time reference for the entire network). This
results in a logical tree topology, referred to as
synchronization tree, built over the physical mesh network, as
shown in Fig. 2. The root of this tree is named
Synchronization Signal Server (S3) and the interface from
which a node acquires the synchronization signal is called
Synchronization Signal Server Port (S3P). The establishment
of this logical tree topology could be automated using several
methods. For example, a customization of the Spanning Tree
Protocol or the information contained in a routing protocol
database (e.g., the OSPF’s) could be used. The definition of
mechanisms and protocols for these purposes is outside the
scope of this paper and left for future work.

S3

S3P
Synchronization Tree

Fig. 2. Synchronization distribution model.

The resulting synchronization model consists in a
synchronization signal generated by a server (the S3)
spreading like a wave through the network and reaching all
nodes. Since the synchronization signal experiences a non-
zero propagation delay and, being network nodes non-ideal, its
transmission/reception/processing are affected by non-zero
variable latencies, each TF features a synchronization error,
i.e., a variable time difference between the beginning of the
generic TF k at the S3 and the beginning of the same TF at the
generic node nN . The original PF algorithm was studied and
developed under the assumption of all nodes sharing a,
possibly UTC-aligned, CTR ensuring that TFs begin
simultaneously on all nodes, as shown in (a) or with a
difference across all nodes smaller than a TF [8]. Section IV
will show that few minor modifications to the PF algorithm
are actually sufficient to allow proper operation when network
nodes are affected by synchronization errors of any
magnitude. However, such modifications ensure proper PF
operation if the synchronization error, and specifically its
maximum variation, are known. Hence, the remainder of this
section is devoted to the synchronization error analysis , under
the assumption that the synchronization signal on reaching a
node directly triggers the beginning of a new TF1.

Let (see Fig. 3):
• k

niT be the instant when the synchronization signal that
determines the beginning of TF k reaches the S3P of the

1 The following analysis can be easily extended to other approaches, such

as synchronizing through the network a local clock that triggers the beginning
of a new TF.

 5

generic node nN , i.e., the instant at which TF k should
begin at nN if there were no latencies.

• k
nbT be the instant at which the TF k actually begins at
nN .

• k
noT be the instant at which the synchronization signal is

transmitted by node nN at the beginning of TF k.
• nTe be the minimum time that nN needs to react to the

synchronization signal, which includes receiving and
processing latencies.

• k
nTeΔ be the variable component of the time that nN

needs to react to the synchronization signal indicating the
beginning of the generic TF k, where

 max0 .k
n nTe Te k≤ Δ ≤ Δ ∀ (1)

• nTt be the minimum time that nN takes to output (i.e., to
begin the transmission of) the synchronization signal
corresponding to the beginning of a TF. nTt is the output
side equivalent of the previously introduced nTe and
includes transmitting latencies.

• k
nTtΔ be the variable component of the time that nN

takes to output the synchronization signal indicating the
beginning of the generic TF k, where

 max0 .k
n nTt Tt k≤ Δ ≤ Δ ∀ (2)

• mnTp be the propagation delay — considered constant —
on the link connecting two adjiacent nodes mN and nN .

• k
nΦ be the synchronization error concerning TF k

affecting the generic node nN . As defined above this
equals the delay with which a TF begins at a node nN
with respect to the time at which the same TF begins at
the S3, i.e. 3S

k k
nb b−T T .

Let’s consider a synchronization path in the network
consisting of a sequence of nodes { }dNNN ,...,, 10 , where 0N
is the S3 from which the others receive the synchronization
signal through the synchronization path. At 0N the
synchronization signal for a certain TF k starts as soon as the
reference clock triggers the beginning of such TF. Given the
above described inaccuracies, the instant at which TF k begins
at node dN is

1 1
0 (1)

0 0
1

1 0 1
 .

d dk k
d i i i

i i
d d dk k

i i i
i i i

b b Tp Tt

Te Tt Te

− −
+

= =
−

= = =

= + + +

+ + Δ + Δ

∑ ∑

∑ ∑ ∑

T T
 (3)

That is, the respective synchronization error k
dΦ consists of

two components: a constant (i.e., time invariant) one dφ , and a
time variant one k

dφΔ :
 k k

d d dφ φΦ = + Δ , (4)
where

 ()
1

(1) 1
0

d
d i i i i

i
Tp Tt Teφ

−
+ +

=
= + +∑ , (5)

and

()

1

0 1
1max max max

1
0

,

0 .

d dk k k
d i i

i i
dk

d d i i
i

Tt Te

Tt Te

φ

φ φ

−

= =
−

+
=

Δ = Δ + Δ

≤ Δ ≤ Δ = Δ + Δ

∑ ∑

∑
 (6)

In conclusion, a generic node nN is affected by a

synchronization error k
nΦ which depends on its position along

the synchronization path.

tNn

Incoming synchronization signal

Outgoing synchronization signal

T k
ni T�k

nb T k
no

Δ k
neTneT−(1)n npT ntT Δ k

ntT +(1)n npT

Fig. 3. Notation.

C. Synchronization Signal Transfer Options
Several solutions could be adopted in order to implement

the presented CTR distribution method, specifically to
transmit the synchronization signal. Some alternatives are
presented and compared leading to the TF delineation protocol
described in Section III.D.

The synchronization signal could be transmitted at the
physical layer using for example redundant codes in the line
coding, modulation exceptions, or a dedicated wavelength on
optical links. Physical layer operation results in a small
synchronization error variation, i.e., considering a generic
node nN , max

nφΔ is limited as the uncertainties on the
transmission and reception of the signal are small. However,
this solution presents some drawbacks:
• It requires specific hardware, i.e., the logic handling the

transmission and reception of the synchronization signal.
• Intermediate layer protocols have to be modified in order

to allow the synchronization signal received at the
physical layer to reach the PF scheduler at the protocol
layer it is operating.

• The resulting PF implementation is not general and
portable as it is dependent from both lower layer
protocols and the availability of specific hardware.

Transmission of the synchronization signal at an
intermediate protocol layer has all the drawbacks listed above,
while lacking the advantages related to the small variation of
the synchronization error. Consequently, although possible, a
CTR distribution based on intermediate layer protocols is not a
sensible solution unless implementation or deployment
specific reasons suggest otherwise.

Alternatively, the synchronization signal can be
implemented at the layer at which PF is deployed (e.g., IP).
Two categories of approaches, requiring different types of
information into packets, can be envisioned: (i) a time stamp
(e.g., TF number and TC number) can be included in each
packet, or (ii) a TF delimiter can be transmitted at the
beginning of each TF.

The former is more robust as a receiving node misses the
beginning of a new TF only if all packets transmitted by an
upstream node during that TF are lost. Moreover, even if this
happens, the node recovers the correct TF from the
information carried by packets received during the following
TF. However, this solution (i) introduces transmission and
processing overhead resulting from the 16 bit (or more)
integer that represents the time stamp, and (ii) requires
modifications to the protocol headers as common protocols

 6

(e.g., IPv4, IPv6, Ethernet, MPLS) do not feature any field
suitable for carrying such time stamp.

The solution based on a TF delimiter can be implemented in
various ways ranging from defining a control packet to be
transmitted as a delimiter to setting a 1 bit field in the first
packet transmitted during a TF. The latter introduces a very
limited transmission and processing overhead and it is not
unlikely that an unused bit be found in an existing protocol
header, thus not requiring major modifications to the
standards. For example, a non reserved codepoint of the
DiffServ (DS) field could be used to implement CTR
distribution with IP packets. The drawbacks of this solution
are:
• Sensitivity to packet loss — a node goes permanently out

of synchronization when the TF delimiter is lost;
• An additional mechanism is needed at system startup to

carry a time stamp allowing each node to initialize the TF
and TC identity.

D. TF Delineation Protocol
In previous work [10] the authors defined a protocol for PF

routers with an externally-distributed CTR to exchange timing
information used for the evaluation of the forwarding TF on
each node. Here this protocol is proposed as a TF delineation
protocol in a PF network based on a network-distributed CTR
according to the synchronization model presented in
Section III.B to implement an efficient and simple CTR
distribution solution. The protocol is based on the combination
of a robust TF delimiter and compressed time stamp, thus
drawing from the strengths of the two solutions, while
avoiding their drawbacks, both highlighted in Section C. As
presented in the following, the solution deploys the DS field of
the IP header, however, it can be similarly implemented with
other protocols (for example, the EXP field of the MPLS shim
header can be analogously used).

Three bits of the DS field, i.e., 8 unreserved DS codepoints,
are used to carry the delimiter/compressed time stamp. Bits
0x0c are set in all PF packets to distinguish them from those
not receiving PF service (e.g., best-effort or differentiated
service packets), bit 0x10 is set to 1 (0) in packets transmitted
during odd (even) TFs, and bits 0x20 and 0x40 toggle their
value every TC and every super cycle, respectively. This
results in an alternating-bit protocol for TF and TC
identification2. PF routers maintain the number of the TF and
TC during which the last received packet was transmitted by
the upstream node. This information is updated every time the
DS codepoint of a packet is different with respect to the
previous packet. TF and TC initialization is performed by
setting the TF and TC number to zero the first time the bit
corresponding to super cycle (0x40) toggles. Consequently,
system initialization lasts up to 1 s (i.e., the super cycle
duration), but happens only when the router starts up and does
not require transmission of additional information. When a

2 Such mechanism can be seen as the transmission of a time stamp
composed of the TC and TF number where, in order to reduce the amount of
information transmitted, the numbers are compressed by sending only the
least significant bit. Also, the mechanism can be seen as delimiting the
beginning of each TF by changing the DS codepoint.

node has no packets (including non-PF packets) to transmit
during a TF on a given link, it sends sequences of padding IP
packets with TF and TC marking for keeping the router at the
other end synchronized3.

While timing information is coming from all interfaces,
only the one received through the S3P is used by a router to
derive the CTR, i.e., to trigger the beginning of a new TF.

Note that the proposed solution can be implemented with
software only components, thus enabling upgrade of existing
equipment and reducing costs with respect to other solutions
that are based on integrated circuits used to control local
clocks.

IV. PACKET SCHEDULING ALGORITHM
Previous work on PF and current implementations are based

on a UTC-aligned, accurate CTR, i.e., 0, ,k
n k nΦ = ∀ .

Considering a network scenario where nodes are characterized
by a variable 0k

nΦ ≠ , PF properties, implementation, and
deployment rules have to be reconsidered. The modifications
required to a PF router initially implemented for and deployed
with an externally-distributed CTR are presented as an
example.

Specifically, a PF router performs four fundamental PF-
related steps: it (i) devises the TF during which each received
packet was sent out by the previous node, (ii) calculates the
forwarding TF of the packet based on the predefined
forwarding delay, (iii) stores the packet in a queue
corresponding to its forwarding TF; (iv) whenever a new TF
begins, it transmits all the packets stored in the queue
corresponding to the TF. The rules and constrains driving
these steps are part of the PF scheduling algorithm and are
presented in several publications [7][8] for PF based on an
accurate CTR. The following sections analyze the
modifications required to such rules and constraints when
routers deploy a low accuracy, possibly network-distributed
CTR. Note that these results can be applied independently of
the network synchronization distribution protocol deployed.
The PF rules defined in [7] for a scenario with ideal CTR, are
generalized here for the case of any synchronization accuracy.

A. TF Duration
One implication of the synchronization error including a

variable component is that the actual duration k
nτ of a generic

TF k at the generic node nN as derived from the
synchronization signal is not constant, as shown in (b). The
actual duration of TF k at node nN is given by the difference
between the beginning instants of TF k+1 and k, i.e.,

1k k k
n n nb bτ += −T T , which, from the definition of k

nΦ , can be
expressed as
 3 3

1 1
S S

k k k k k
n n nb bτ φ φ+ += + Δ − − ΔT T . (7)

If, as it is reasonable, the latencies in receiving and
processing an external synchronization signal by an S3 are

3 Notice that this does not represent a bandwidth waste since the

transmission link would anyway be idle.

 7

ignored, 3 3
1 ,S S

k kb b k+ − =Τ ∀T T . Thus, given that min 0,n nφΔ = ∀ ,
we have that
 max max .k

n n nφ τ φΤ − Δ ≤ ≤ Τ + Δ (8)

Since resource reservation is based on TF nominal
duration Τ , a variable TF duration may result in the
impossibility of keeping PF schedules during shorter TFs (i.e.,
some packets scheduled for a TFs cannot be transmitted
because the TF finishes too early), with consequent possible
packet backlog at the PF buffers, buffer overflow, and packet
drops.

Guaranteeing deterministic quality of service, i.e., no loss
and unpredictable delay and jitter due to network congestion,
is possible by simply forwarding all packets that match the
predefined schedule for TF k, i.e., that have been reserved
resources during TF k, even if this requires extending the
transmission beyond TF k end, i.e., after 1k

nb +T . According to
this new operation mode, the transmission of packets
scheduled during a TF k ends at different times on different
output interfaces of the same node. This leads to a new
definition for the TF beginning, which is no longer specific
only to a node nN , but also to a particular output interface:

Definition 1. In a PF node using a network-distributed CTR
realized according to the presented synchronization
mechanism, the beginning of a new TF on an output interface
is identified by the latest of the following events:
1) the synchronization signal is received at the S3P,
2) the output buffer corresponding to the current TF on the

given interface becomes empty.
The above definition is coherent with the original definition

of TF with an ideal CTR, in which case 1) is the possibly
external timing signal triggering the beginning of a new TF
and 2) is guaranteed to happen before such event. Moreover,
Definition 1 can be modified to fit other CTR distribution
solutions by substituting event 1) with whatever timing event
triggers the beginning of a new TF.

Transmission of packets scheduled during a TF lasts at most
Τ (resource reservation is based on this value), while the
minimum TF duration, given by (8), is max

nφΔ−Τ . Thus, the
maximum time packet transmissions can continue beyond TF
duration, namely after the arrival of a synchronization signal,
is max max .ex nT φ= Δ This happens when a TF has minimum
duration; the condition for such event can be derived from (6)
as

max

1 min 0.

k
n n
k
n n

ϕ ϕ

ϕ ϕ+

⎧Δ = Δ⎪
⎨

Δ = Δ =⎪⎩
 (9)

Consequently, the maximum error on the beginning of TF
k+1, i.e., the maximum synchronization error, on a generic
output interface of a generic node nN according to
Definition 1 is obtained by adding max

exT to the maximum
synchronization error of TF k+1 as given by (4) and then
applying (9), thus obtaining
 maxmaxminmax

nnexnnn T φφφφ Δ+=+Δ+=Φ . (10)

Thus, it can be concluded that the network synchronization
model presented in Section III.B also applies when TFs
comply with Definition 1 and the proposed definition of the
TF beginning does not affect the maximum synchronization
error. However, in this case the network-distributed CTR
features a different synchronization error for each interface.
Equation (10) is extended as follows in order to capture this:
 max max , :nm nm nm m nm N Aφ φΦ = + Δ ∈ , (11)

where nA denotes the set of the neighbors of the generic node
nN , as defined in Section II.A, and nm refers to the interface

of nN connected to the link to mN .

B. Forwarding TF Evaluation
As discussed in Section II.A, PF operation determines a

dependency among the forwarding TFs for each packet in all
the nodes across the network. The forwarding TF at a generic
node nN can be expressed, in accordance to [8], as:
 1 (1)n n n nF F fα− −= + + , (12)

where:
• nF is the forwarding TF of the packet at the generic node

nN .
• 1nF − is the forwarding TF of the packet at the previous

node 1nN − on the path of the packet.5
• (1)n nα − is the minimum acceptable forwarding delay

(introduced in Section II.A) between node 1nN − and node
nN . In order to make sure that packets are already in the

output buffer of node nN when their forwarding TF
begins, the forwarding delay must be greater than or
equal to the sum of the propagation delay on the link
connecting the nodes, the processing time, and additional
latencies that characterize both nodes. Given 1nN − and

nN , we can express this sum as
 1

1 1 (1)(1)
F F Fnn n

n n n n n nn nD Tt Tt Tp Te Te−
− − −− = + Δ + + + Δ , (13)

 which, considering the worst case max
(1) 1n n nD Tt− −= +

 max max
1 (1)n n n n nTt Tp Te Te− −Δ + + + Δ , leads to

max
(1)

(1)
n n

n n
Dα −

−
⎡ ⎤

= ⎢ ⎥Τ⎢ ⎥
. (14)

• f models the adopted forwarding scheme [7]. 0f =
represents immediate forwarding operation, i.e., applying
the minimum acceptable forwarding delay.
f +∈ models non-immediate forwarding operation, i.e.,

deploying a larger forwarding delay, which enables
reducing blocking probability at the expenses of
implementation complexity by not necessarily forwarding
a packet as soon as it is available at the output port [7][9].

The above forwarding TF calculation method refers to the
case where all network nodes are perfectly synchronized, i.e.,

0, ,k
n k nΦ = ∀ . If the CTR is distributed through the network

using the presented technique, (i) TFs do not begin at the same
time on all nodes, (ii) the synchronization error is different at
each node (i.e., k k

n mΦ ≠ Φ if n mN N≠), and (iii) both TF
alignment and synchronization error vary in time (i.e.,

5 Although nF and 1nF − are packet dependant, the packet is not explicitly
indicated to simplify the notation.

 8

k k
n nφ φ ′Δ ≠ Δ , if k k ′≠). This has to be considered in the

forwarding TF calculation.
Theorem 1. In a PF network where the CTR is distributed

to nodes with a non-zero synchronization error, proper PF
operation is ensured when the forwarding TF for a packet is
calculated at the generic node nN as:
 1 (1)n n n nF F fα ∗

− −= + + , (15)

where

max min max

1 (1)
(1)

n n n n
n n

Dα − −∗
−

⎡ ⎤Φ − Φ +
= ⎢ ⎥Τ⎢ ⎥

. (16)

Proof. Given a forwarding TF nF at a node nN , a
necessary and sufficient condition that guarantees the PF
algorithm to work properly is that the time at which the packet
transmission is scheduled at node nN , i.e., the time
(corresponding to Fn

noT) at which transmissions for TF k
begins at node nN , follows the time at which the packet enters
the output buffer of the node (denoted as Fn

nibT), i.e.,
 .F Fn n

n no ib≥T T (17)
Given the definition of Fn

nbT in Section III.B, we can write
 3

n n n
S

F F F
n no b= + ΦT T (18)

and
 1 1 1

3 1 (1) .n n n n
S

F F F F
n n n nib b D− − −

− −= + Φ +T T (19)

Since the inequality (17) has to hold for every value of Fn
nΦ

and 1
1

Fn
n

−
−Φ , specifically for the worst case we can derive:

 1
3 3

min max max
1 (1) ,n n

S S
F F

n n n nb b D−
− −+ Φ ≥ + Φ +T T

and converting in TFs as a time measurement unit, we obtain:

max min max

1 (1)
1 .n n n n

n n
DF F − −

−
⎡ ⎤Φ − Φ +

≥ + ⎢ ⎥Τ⎢ ⎥

□
Note that (14) can be derived from (16) with

1
1 0F Fn n

n n
−

−Φ = Φ = .

C. Buffer Dimensioning
Buffers have to be properly dimensioned in network nodes

to guarantee that no packet is lost when nodes perform PF.
The additional delay packets incur due to the deployment of a
network-distributed CTR has to be taken into account when
dimensioning the buffers.

Theorem 2. Let R be the output link capacity. The size of
the buffer on the output interface of a node nN that guarantees
no loss for a pipelined packet is:

 ()(1) (1) ,n n n n nBuff f Rα β∗
− −= + + ⋅Τ ⋅ (20)

where, defining min min min
(1) 1 1 (1)n n n n n n n nD Tt Tt Tp Te Te− − − −= + Δ + + + Δ ,

max min min

1 (1)
(1)

n n n n
n n

Dβ − −
−

⎡ ⎤Φ − Φ −
= ⎢ ⎥Τ⎢ ⎥

. (21)

Proof. For each TF, PF output buffers on node nN have to
store packets from the instant (denoted as k

nibT for the generic
TF k) they enter the buffer of the node to the moment they

begin to be sent out (k
noT for TF k)6. The maximum difference

between such instants over time is:
 ()max .k k

n n
k

o ib−T T (22)

Considering that (i) a queue must be associated to each TF,
(ii) its size must have sufficient capacity to contain the total
amount of bytes that can be transmitted during such TF (i.e.,

R⋅Τ bits), and (iii) each queue can be reused (i.e., associated
to another TF) as soon as the associated TF is over and all its
packets have been transmitted, the minimum total number of
required queues is given by the minimum number of TFs

TFN such that their total duration is longer than (22) , i.e.:

()max k k

n n
k

TF

o ib
N

⎡ ⎤−
⎢ ⎥=
⎢ ⎥Τ
⎢ ⎥

T T
.

Considering that by definition 3 /S
kb kΤ =T� ,from (15), (18),

and (19) we can derive
 (1) (1)TF n n n nN fα β∗

− −= + + . (23)

Given that each queue should be capable of storing R⋅Τ bits,
the total buffer requirement is:
 n TFBuff N R= ⋅Τ ⋅ ,

Note that (20) and (21) are valid also in case 0, ,k
n n kΦ = ∀ ,

i.e., when an externally-distributed CTR is deployed all over
the network.
□
Moreover, adding an extra queue avoids concurrent reading

and writing access to memory, thus eliminating the need of a 2
speed up of memory access speed, which can result in a
significant cost cut for high speed interfaces:
 ()(1) (1) 1n n n n nBuff f Rα β∗

− −′ = + + + ⋅Τ ⋅ . (24)

Lemma 1. Lossless PF with a network-distributed CTR on the
path { }HNNN ,...,, 10 is ensured by deploying on the output
interface of each node nN a buffer of size:

max max max max
1 1 1n n n n

n
Tt TeBuff f Rφ φ− −⎛ ⎞⎡ ⎤Δ + Δ + Δ + Δ

= + + ⋅Τ⋅⎜ ⎟⎢ ⎥⎜ ⎟Τ⎢ ⎥⎝ ⎠
. (25)

Proof. By substituting (1)n nα ∗
− as derived from (16) in (23)

and considering that either ⎡ ⎤ ⎡ ⎤ ⎡ ⎤yxyx +=+ or
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 1++=+ yxyx , in the most conservative case the number
of queues guaranteeing lossless PF operation according to (23)
is

max min max min max min

1 1 (1) (1) 1n n n n n n n n
TF

D DN f− − − −⎡ ⎤Φ − Φ + Φ − Φ + −
= + +⎢ ⎥Τ⎢ ⎥

.

Further considering the definitions given in (1), (2), (4), and
(6) we obtain

max max max max

1 1 1n n n n
TF

Tt TeN fφ φ− −⎡ ⎤Δ + Δ + Δ + Δ
= + +⎢ ⎥Τ⎢ ⎥

. (26)

The corresponding amount of buffering can be derived by

6 As it is common in router implementations, an additional transmission

buffer of size R⋅Τ is provided at the lower protocol layer to store packets as
they get transmitted.

 9

considering the amount of bits that can be transmitted during
one TF, i.e., R⋅Τ .
□
From (25) it can be observed that

1) Buffering at a node nN depends on the maximum
variation of timing parameters — specifically the
synchronization error and the input latency at the node
(i.e., max

nφΔ and max
nTeΔ) and the synchronization error

and the output latency at the previous node on the
forwarding path of the packet (i.e., max

1nφ −Δ and max
1nTt −Δ)

— and not on their absolute values.
2) Buffering (as well as the forwarding TF) at a generic

node nN depends on timing parameters at both the node
itself and the previous node 1nN − on the path of the
packet. It can thus be concluded that in order to guarantee
lossless service in a PF node nN each output interface
must be equipped with a buffer of size:

max max max max

, ,
max max

1 .m n m n
m m n n

m N A m N A
n

Tt Te
Buff f R

φ φ
∈ ∈

⎛ ⎞⎡ ⎤Δ + Δ +Δ +Δ
⎜ ⎟⎢ ⎥= + + ⋅Τ⋅⎜ ⎟⎢ ⎥Τ⎜ ⎟⎢ ⎥⎝ ⎠

 (27)
The above is derived by generalizing (25) to take into account
the neighbor featuring highest variability of its timing
parameters.

D. Delay and jitter analysis
A comparison of (14) and (16) shows that the

synchronization error impacts directly on the delay introduced
by each node, i.e., simple and low accuracy network-
distribution of the CTR is possible at the expenses of
increased end-to-end delay and jitter. By analyzing (5) and (6),
it can be noted that such increase grows with the number or
nodes through which the CTR is distributed, i.e., the sparser
S3s, the higher the end-to-end delay and jitter introduced by
the network on an average flow. In particular, the time spent
by a packet in the output queue of a PF node varies between 0
(when the packet arrives just before the beginning of its
forwarding TF) and ()max k k

n n
k

o ib−T T , as given by (22). The
maximum jitter J experienced by the packet through a PF
network is given by the maximum time spent in the buffer of
the last node on its path{ }HNNN ,...,, 10 , i.e., from Theorem 2
and (22):

 ()(1)(1) H HH HJ fα β∗
−−= + + ⋅ Τ . (28)

Furthermore, the total maximum buffering delay experienced
by a packet along the path { }HNNN ,...,, 10 is
 ()0 0maxH Hk k

hh hh hk
o ib Buff R= =− =∑ ∑T T . (29)

E. Discussion
Previous subsections gave the guidelines to implement PF

when the CTR is distributed through the network with
arbitrarily low accuracy. Equations (16) and (27) provide the
guidelines to dimension a network node so that proper
operation is guaranteed by keeping into account maximum and
minimum synchronization error at each node. While
synchronization over a traditional packet network is

significantly affected by queuing delay, which is hard to
bound and estimate, over a PF network with the proposed
CTR distribution method, the main causes for the
synchronization error k

nΦ at a generic node nN are (i) non-
zero propagation delay, (ii) non-zero packet processing time of
transmission and reception modules, and — especially — (iii)
their variability that depends on issues ranging from hardware
components, to system architecture, to software
implementation.

Providing a reliable estimate of the minimum
synchronization error is not critical as it could in principle be
set to 0 or, when the contribution of the propagation delay is
significant (i.e., in a long haul link scenario), to the
propagation delay. Also providing an upper bound on the
variation of the propagation delay, which is due to temperature
fluctuations caused by changing weather conditions or wear
and tear of the medium, is not critical. Propagation delay
variations can be accounted for by allowing a safety margin of
k TFs in the forwarding delay. k depends on the TF duration,
is likely to be 1 in most practical cases, and anyway does not
have a significant impact on the end-to-end delay because the
propagation delay variation is much smaller than packet
processing delay and the other components of the
synchronization error.

The packet processing time introduced by
hardware/software modules that perform transmission,
reception, and handling of packets (such as the PCI bus or the
Ethernet NIC in the PC-based prototype deployed in the
experiments reported in the following section) is more critical
as it has significant relative and absolute variations. However,
proper design and implementation of the router can ensure
such time to be bounded and its value can be devised based on
either the system design or experimental characterization
though specifically targeted lab tests and measurements.

Since in the implementation used in this work the
synchronization signal is conveyed in network layer packets,
their transmission delay also contributes to the
synchronization error. Although varying, this is not critical as
it is obviously bounded by the time required to transmit a
Maximum Transmission Unit (MTU) as defined for the
specific data link protocol deployed.

If the forwarding delay resulting from an estimate of the
maximum synchronization error is not appropriate, the
deterministic operation of PF is affected. Deployment of a
more sophisticated CTR distribution solution, e.g., deploying a
local clock to smooth out the variations of the synchronization
error, would ensure that it stays within the estimate, hence
ensuring deterministic operation with the proposed modified
PF operation. Moreover, the disruption of the deterministic
service is temporary and proper operation is automatically
resumed after the first TF not fully utilized to transmit
pipelined packets, as ensured by the proposed PF algorithm
for low accuracy CTR.

Improvements to the proposed CTR distribution solution
are possible at the expense of increased complexity to:
• Reduce the synchronization error, and consequently

packet delay and jitter resulting from PF (which Section

 10

IV.D showed to be dependent on the synchronization
error);

• Avoid deterministic service being disrupted if the
estimate on the maximum processing and propagation
delay, i.e., on the maximum synchronization error, is
exceeded;

• Ensuring proper CTR distribution and seamless PF
operation in case of link and nodes failures.

For instance, the timing information received from all the
input links of a node could be used as synchronization signals,
along the lines of the solution proposed in [19]. Alternatively,
a local clock synchronized with the synchronization signals by
means of a phase locked loop (PLL) could be deployed.
However, this is outside the scope of this paper that aims at
showing how PF, with minimal changes to the original
algorithms, can properly operate with a low accuracy CTR,
even if distributed through the network with a low complexity
protocol. A major outcome of this section is the general
validity, i.e., with any synchronization mechanism, of the
proposed modifications to the original PF algorithms and
system dimensioning as expressed by (16) and (27). However,
an analysis of the performance and properties of PF with more
sophisticated (and more complex) CTR distribution solutions
is left for future work.

V. EXPERIMENTAL RESULTS
Some experiments were run on a testbed of TDP routers

implemented by 2.4 GHz Pentium IV PCs running a modified
version [10] of the FreeBSD 4.8 routing software. The results
demonstrate the effectiveness of the CTR distribution solution
proposed in Section III.D and validate the analysis of the
modified PF operation presented in Section IV. Results
obtained from the experiments are then extended to a large
scale network by applying the equations proven in Section IV,
which demonstrates the feasibility and the effectiveness of the
proposed method in an arbitrary network.

A. Synchronization Error Measurement
If the proposed CTR distribution method is used, the main

causes for synchronization error are propagation delay, packet
processing time, and their variability that in our PC-based
router is due to (i) access to shared resources, such as CPU,
memory, communication buses, etc. and (ii) the interrupt-
driven nature of the FreeBSD kernel. Thus, the resulting
synchronization error is in this case expected to be particularly
large and variable under high traffic load. However, this
provides a good reference point as it can be considered as a
worst case scenario in which to experiment with the proposed
solution. In fact, special purpose routers usually deployed in
real networks are designed to minimize packet handling time
and, consequently, its variations.

A first set of experiments was run to measure the various
system latencies and devise the synchronization error
components introduced by our prototypal network nodes in
order to get an idea of its order of magnitude. Fig. 4 shows the
measurement setup. An Agilent N2X Router Tester is used to
generate a traffic flow that enters TDP router R1, is forwarded

to TDP router R2, and then is routed back to the router tester,
all across FastEthernet links (100 Mb/s). In this first set of
experiments, R1 and R2 execute the TDP scheduling
algorithm with an externally-distributed CTR that is acquired
through a GPS receiver, i.e., TFs on both routers are aligned
with UTC. Time from the GPS receivers is also used to
measure the interval between the beginning of a packet
transmission at the TDP scheduler on R1 until the packet is
processed at the IP layer (i.e., where the DS field is processed)
on R2. In a network-distributed CTR scenario in which R1 is
an S3 and the interface of R2 toward R1 is its S3P, the
measured time interval represents the synchronization error at
R2, which includes the various contributions identified in
Section III.B, specifically
 2 1 2 1 2 1 2R R R R R R RTp Tt Te Tt TeΦ = + + + Δ + Δ , (30)

where 21RRTp is negligible for all purposes having used a short
cable between the routers stacked one on top of the other.

Router Tester
R1 R2

GPS

Fig. 4. Synchronization error evaluation testbed.

0,000

0,002

0,004

0,006

0,008

0 50 100 150 200 250 300 350 400 450 500
μs

Fr
ac

tio
n

of
 p

ac
ke

ts

Fig. 5. Potential synchronization error distribution.

Fig. 5 plots the distribution of the synchronization error that
the prototypal router potentially introduces. The various
components of the synchronization error are measured over
100 test runs with fully loaded links and various packet
lengths. In particular, the router tester generates ten 10 Mb/s
CBR UDP flows with constant message size on its port
connected to R1 fully loading (as a 100 Mb/s aggregate flow)
the links. The size of the IP packets is varied in each test run;
sample configurations include: all flows deploying the
minimum size of 64 bytes (corresponding to about 20000
offered packets per second), all flows deploying the maximum
size of 1500 bytes (about 800 packets per second), all flows
deploying different packet sizes variably chosen between the
above minimum and maximum. Each test lasts 15 minutes,
hence the number of observed packets ranges between about
720 thousands and about 18 millions. The maximum and
minimum synchronization errors measured are

min min

2
max max

2

7 μs,
480 μs.

R

R

Φ = Φ =
Φ = Φ =

 (31)

 11

In order to properly configure the forwarding delay and
buffering space in all nodes of the testbed network deployed
for the experiments reported in Section B, the synchronization
error at each node should be devised. Since all nodes are based
on the same architecture and all links have the same length,
measurements done on one of the nodes are in all likelihood
representative of all the others. Consequently, the
synchronization error at a node d hops from the S3 on the
synchronization path can be derived from (4) considering that
each of the d upstream nodes features a synchronization error
characterized according to (31):

min min

max max .
d

d

d
d

Φ ≈ ⋅ Φ
Φ ≈ ⋅ Φ

 (32)

B. Experiments with Network-distributed CTR
Fig. 6 shows the network testbed deployed in the

experiments that involves 4 TDP routers connected by
100 Mb/s Ethernet links with 250 μs TFs (i.e., 250 μsΤ =).
R1 acquires UTC from the GPS and is an S3; R2, R3, and R4
acquire the CTR through the network using the CTR
distribution solution (Section III.B and Section III.D)
presented in this paper. Each router should select as S3P its
interface connected to R1 in order to minimize the network
synchronization error. However, since the presented
experiments aim at assessing CTR distribution over multiple
hops — as it would be in a real work network — S3Ps have
been selected differently and are identified by a solid circle in
Fig. 6.

For the sake of brevity and without loss of generality, only
experiments with TDP immediate forwarding (i.e., 0=f)
are reported here. The forwarding delay for each input
interface and the buffer size required on each output interface
is derived from (16) and (27), respectively, by using the
network synchronization error figures devised with the first set
of experiments — i.e., (31) and (32). Since all nodes are based
on the same architecture and all links have the same length,

(1)n nα − is the same for every pair of nodes in the testbed and,
from (13), max max

(1)n nD − = Φ , min min
(1)n nD − = Φ , and, consequently,

max max max min , ,m n m nTt Te m N AΔ + Δ = Φ − Φ ∀ ∈ , where nA is the
set of nodes directly connected to nN . Although not necessary
in a PC-based mono-processor router, the additional buffering
to avoid concurrent read/write access as specified in (24) was
also considered so that experiments are run with the worst
case delay scenario. The resulting system parameters are
summarized in Table I. The detailed calculation of the
parameters of R2 is reported in the following as an example.

• Forwarding delay. R1 acquires UTC from the GPS,
hence max

1 0RΦ = . From (31) and (32), min
2 7 μsRΦ = and

max
3 2 480 960 μsRΦ = ⋅ = . Furthermore, as described

above, max max
1 2 3 2 480 μsR R R RD D= = . This leads to

max min max

1 2 1 2
1 2

R R R R
R R

Dα ∗ ⎡ ⎤Φ − Φ +
= =⎢ ⎥Τ⎢ ⎥

2 TF,

max min max

3 2 3 2
3 2

R R R R
R R

Dα ∗ ⎡ ⎤Φ − Φ +
= =⎢ ⎥Τ⎢ ⎥

6 TF.

• Buffering. Among the nodes directly connected to R2,

R3 is affected by the largest synchronization error
(()max max min

3 3 3 2 480 7 946 μsR R RφΔ = Φ − Φ = ⋅ − =), hence
from (27) it can be derived:

max max max min
3 2

2 1 28125 bytesR R
RBuff Rφ φ⎛ ⎞⎡ ⎤Δ +Δ +Φ −Φ

= + ⋅Τ⋅ =⎜ ⎟⎢ ⎥⎜ ⎟Τ⎢ ⎥⎝ ⎠

and, from (24),
2 2 31250 bytesR RBuff Buff R′ = + Τ⋅ = .

R1 R2

R3R4

GPS

Router Tester

to R1
from
R2

from
R4

to
Router
Tester

to
Router
Tester

from
Router
Tester

Traffic Flow

4
3

1
2

1

2
3

1
2

3
1

2
3

A

B
C

Fig. 6. Testbed

TABLE I

FORWARDING DELAY AND BUFFER SIZE

Router Input NIC Forwarding Delay [TF] Buffering [byte]
1 4
2 6 R1
3 8

31250

1 2
R2

2 6
31250

1 4
2 2 R3
3 8

43750

1 6
R4

2 2
43750

TABLE II
MAXIMUM JITTER WITH A NETWORK-DISTRIBUTED CTR

Traffic Flow Max measured [μs] Analytical bound [μs]
A 730 1000
B 916 3000
C 753 2000

The router tester generates three 100 Mb/s UDP flows on

the Gigabit Ethernet link to R1. Since the three flows are
routed as shown by the dotted lines in Fig. 6, each link links
between TDP routers is fully loaded. In order to simplify
resource reservation (manually performed in our prototypal
implementation) and without loosing in generality, packet size
is programmed to periodically vary among the four pre-
defined values 64 bytes, 260 bytes, 625 bytes, and 1041 bytes,
which result in 48, 12, 5, and 3 packets contained in each TF,
respectively. The paths of the three flows realize every
possible scenario a node can be faced with concerning the
relation between data traffic and CTR distribution. For
example, packets received by a node nN from a node 1nN −
where the synchronization error 1

k
n−Φ is smaller/greater

than k
nΦ , packets received from the S3P, etc. The jitter is

measured on each flow (see Table II) during ten different tests,
each one lasting 2 days. No packet is lost during the
experiments and the jitter does not exceed its analytical upper
bound given by (28), which validates the analysis presented in

 12

Section IV7. As an example, the maximum measured jitter for
flow A (730 μs) is smaller than the analytical bound

4 1msJ = ⋅Τ = obtained by substituting (1) 1 2 2TFH H R Rα α∗ ∗
− = =

and (1) 1 2 2 TFH H R Rβ β− = = (0=f in all our experiments)
in (28).

C. Delay and buffering
Due to the toy network on which they had been devised, the

results presented so far do not demonstrate a large scale
deployment of PF with a network-distributed CTR. However,
they enable us to validate the presented analysis and devise
synchronization error bounds for the prototype router that are
given in (31). By applying (16), (27), and (29), the
measurements on the testbed in Fig. 6 can be used to evaluate
the buffering requirements and the maximum delay
experienced by packets over an arbitrary network composed of
PC-based prototypal routers. Assuming a network in which the
maximum number of hops between any node and an S3 is D,
the largest buffer size and buffering delay are the ones on a
path traversing only routers at maximum distance D from the
S3. Fig. 7 shows an example of such path, which we call the
slowest path, for D = 3 hops that traverses 6 PF hops, i.e., 6
links on which PF of packets is performed.

Fig. 8 plots the maximum end-to-end buffering delay
(devised using (29)) on a slowest path versus the number of
hops H on the path for several values of D. The buffer size
(reported in Fig. 10) is calculated according to the procedure
detailed in Section V.B (the additional buffer to avoid
concurrent read/write access, as discussed in Section IV.C, is
not considered here) noticing that, according to (31) and (32),
the maximum and the minimum synchronization errors of
nodes at a distance D from the S3 are maxD ⋅Φ and minD ⋅Φ ,
respectively. The maximum end-to-end buffering delay is
devised by applying ()H HBuff R⋅ , derived from (29) by
considering that hBuff is the same for every node hN in the
path as all nodes are at distance D from the S3. For example,

maxD 1.44 ms⋅Φ = and minD 21μs⋅Φ = if D = 3 and maxΦ
and minΦ assume the values devised for our prototypal router
and provided by (31). Hence, the buffering delay experienced
after H = 5 hops by a packet traveling on a path whose nodes
are at distance D = 3 from the S3 is equal to

()5 (1419 1419 473) 1 18.75ms⋅ + + Τ + ⋅Τ=⎡ ⎤⎢ ⎥ .
Considering that the total end-to-end delay includes in

addition propagation delays, we set the maximum acceptable
end-to-end buffering delay to be 50 ms (dashed line). Fig. 8
shows that only small distances from the S3 (i.e., low values
of D) can guarantee this bound on slowest paths composed by
a reasonable number of hops. For example, if D = 5, packets
can traverse 9 slowest path hops before exceeding the 50 ms
bound, which is a reasonable path length. However if D = 11
the maximum number of hops on the slowest path is only 4
before exceeding the delay budget, which is unreasonable in
practical networks. Nevertheless, in an access network where

7 The presented experiments focus on assessing exclusively PF operation
with network-distributed CTR and the CTR distribution solution presented in
this paper. A general evaluation of PF, its properties, and benefits stemming
from its deployment are outside the focus of this paper and were object of
previous work (see for example [6],[7]–[11]).

low end routers such as the deployed PC-based prototypes
might be used D = 5 is a realistic value. Reasonably assuming
that each service provider deploys an S3 in its network, the S3
is going to be within a limited number of hops (reasonably less
than 5) from end-users. Hence, the presented results show how
the proposed solution enables the PF technology to reach also
the extreme edge of the network with low cost, not specifically
designed nodes — such as a PC-based router.

S3

Source

Destination

D = 1

D = 2

D = 3

Fig. 7. Slowest path

However, these results somehow represent a worst case
scenario as they refer to a low performance (from both the
software and hardware viewpoint) prototypal router. In fact,
high performance commercial routers have maximum packet
handling latency of few μs. For example, the maximum packet
handling latency measured on a Juniper Networks T640 core
router [20] during a zero-loss test with small FIFO buffers and
no route-lookup delays (no routes present in the router), is
about 50 μs. Although this test has been designed to avoid
long buffering and lookup delays, the measured latency
includes delays related to some functions — such as
processing, switching, and buffering — that do not affect the
synchronization accuracy in a PF network, but give the largest
contribution to packet latency. Consequently, it is reasonable
to assume that the latency of functions affecting the
synchronization accuracy, i.e. packet transmission and
reception, does not exceed 10 μs. This results in a lower
synchronization error in each node and consequently in lower
delay, jitter, and buffering requirement when compared to our
prototype routers. Fig. 9 presents an estimate of the maximum
end-to-end buffering delay if high performance low latency
routers are used. TF duration is set to 50 μs, which is a
suitable value for high performance routers connected with
high speed links (i.e., 10 Gb/s). Fig. 9 shows that, with D = 11
and 20 hop paths, the maximum end-to-end buffering delay is
about 5 ms, thus a small fraction of the 50 ms bound.

Fig. 10 plots the amount of buffering nodes require versus
the distance D from the S3, We have considered both our TDP
router prototype with 100 Mb/s ports and a high performance
router with 10 Gb/s ports. Results show that the buffer size
ensuring loss avoidance is limited for both types of routers,
even if nodes are D = 11 hops far from the S3. The buffer size
required by the high performance router (solid line in Fig. 10)
is roughly three orders of magnitude smaller than the one
adopted in current asynchronous routers operating (with loss)
according to the DiffServ model. The limited memory
requirement is extremely important for the realization of so
called terabit routers as buffers of very high capacity ports
must have high memory access bandwidth, which at the

 13

current state of the art implies very high per-byte cost. Buffer
size as given by Theorem 2 also implicitly defines the upper
bound on the per-node jitter (that is also the end-to-end jitter
because with PF jitter is not additive along the path to the
destination), as given by (28). The solid curve in Fig. 10
shows how high performance commercial routers can ensure a
low jitter even with a network-distributed CTR on a large
backbone. For example, with D=11 (i.e., nodes as far as 11
hops from an S3), the jitter is about 300 μs (i.e., 6 TFs). As
shown by the dotted line in Fig. 10, also low cost PC-based PF
routers can guarantee acceptable jitter, such as 24 TFs or 6 ms
when D=5, i.e., when the synchronization signal travels a
limited number of hops to reach every node. This further
demonstrates the feasibility of implementing and deploying PF
with a low accuracy CTR, possibly distributed through the
network with a very simple protocol such as the one proposed
in this work. Specifically, the feasibility is demonstrated on
both a low cost, low performance router platform, such as a
PC, on an access network, and on a high end commercial
router on a large backbone.

VI. CONCLUDING REMARKS
This paper analyzes how Pipeline Forwarding (PF) of

packets can be based on a low accuracy Common Time
Reference (CTR) distributed through the network. A CTR
distribution solution aiming at simplicity and ease of
implementation, possibly by adding a software-only module to
existing devices, is also presented. The analytical work and
experiments validate both the proposed synchronization
solution and the PF modifications to enable its operation with
a low accuracy network-distributed CTR, thus demonstrating
its feasibility and applicability to both large scale, high speed
networks where minimum buffering requirements are of
utmost importance and access networks where low end routers
might be deployed.

The experimental results presented in the paper are obtained
with a TDP router prototype. Although they could seem poor
at first sight, they are in fact very significant: the simplicity of
the deployed algorithms, for both packet scheduling and
synchronization distribution, enables their software-only
implementation in low cost architectures, such as PCs, thus
making them capable of providing guaranteed quality of
service. Such low cost routers provide acceptable delays only
in scenarios where synchronization is distributed through a
small number of hops and paths through the network are not
too long, such as, for example, access networks. In such
scenario, a low complexity, software-only implementation of
both PF and CTR distribution is key to enable PF deployment
in home gateways and wireless access points. In fact, devices
available in that market segment are currently not equipped
with local clocks that might be dedicated to the
implementation of the CTR. Moreover, even if PF became
more widely adopted, it might not be cost effective to include
ad-hoc hardware in low-end equipment. On the other hand, the
paper argues that implementation of PF with network-
distributed CTR in high-end commercial routers is suitable for
global scale operation.

The service guarantees, and especially the scalability
featured by PF, cannot be achieved by other existing
technologies: asynchronous packet scheduling fails in
guaranteeing quality of service without underutilizing network
resources (i.e., without performing resource overallocation),
while synchronous techniques like Sonet/SDH require
complex architectures and very accurate synchronization (e.g.,
a PC-based implementation is unthinkable of).

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
H [hop]

En
d-

To
-E

nd
 B

uf
fe

rin
g

D
el

ay
 [m

s]

D = 1 D = 3
D = 5 D = 7

D = 9 D = 11
Acceptable Delay

Fig. 8. Maximum end-to-end buffering delay on the slowest path

(min
iΦ = 7μs, max

iΦ = 480μs, Τ = 250μs)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
H [hop]

En
d-

To
-E

nd
 B

uf
fe

rin
g

D
el

ay
 [m

s]

D = 1 D = 3
D = 5 D = 7
D = 9 D = 11

Fig. 9. Estimated maximum end-to-end buffering delay with high performance

commercial routers (min
iΦ = 1μs, max

iΦ = 10μs, Τ = 50μs)

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11
D [hop]

B
uf

fe
r S

iz
e

[K
B

]

Φmin = 7μs, Φmax = 480μs,
T = 250μs, Link 100Mb/s

Φmin = 1μs, Φmax = 10μs,
T = 50μs, Link 10Gb/s

Fig. 10. Buffering requirement

Given that forwarding delay, buffering requirement, and
jitter are dependent on the synchronization error — the latter
two on its variation, as shown by (27) — minimizing it, and
especially its variations, is essential. Work can be done in this
respect in at least two complementary directions: (i) reducing
latencies in network nodes and (ii) limiting the maximum
number of nodes through which the CTR is distributed.

Regarding the first issue, work is ongoing to improve the
performance of the TDP router prototype. Fig. 5 shows that
the variable component of the synchronization error in the

 14

presented experiments is less than one TF for most packets.
The higher latencies randomly observed stem from both
hardware architecture and operating system designed for
general purposes and not therefore optimized for PF operation.
Although, as mentioned earlier, the TDP router prototype is
not fully representative or optimized commercial routers, work
on its improvement as PF node can provide experience and
insight into general implementation issues. Preliminary results
after modifying the FreeBSD kernel in this direction are very
promising.

In order to limit the number of nodes through which the
CTR is distributed a network can be divided in
synchronization areas, each one equipped with an S3 from
which network nodes derive the CTR. Such areas can be
identified dynamically through the protocol for the
construction of the synchronization tree according to various
criteria. For example, in a scenario in which OSPF is used for
distribution of routing information, it could be also used for
the construction of the synchronization tree and
synchronization areas can coincide with OSPF areas. The
design of a protocol for the construction of the
synchronization tree, also supporting the identification of
synchronization areas and reconfiguration in case of failure, is
the object of additional study that will also address the impact
on existing schedules of changing S3 and S3P.

ACKNOWLEDGMENT
The authors would like to thank Riccardo Giacomelli whose

graduation project helped starting up this work.

REFERENCES
[1] S. Blake et al., “An architecture for Differentiated Services,” IETF Std.

RFC 2475, Dec. 1998.
[2] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet

architecture: an overview,” IETF Std. RFC 1633, July 1994.
[3] A. K. Parekh and R. G. Gallager, “A generalized processor sharing

approach to flow control – the multiple node case,” IEEE/ACM Trans.
Networking, vol. 2, no. 2, pp.137–150, 1994.

[4] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proc. of the IEEE, Vol. 83, No. 10, 1995.

[5] S. Floyd and V. Jacobson, “Link-sharing and resource management
models for packet networks,” IEEE/ACM Trans. Networking, Vol. 3,
No. 4, 1995.

[6] M. Baldi and Y. Ofek, “End-to-end delay analysis of videoconferencing
over packet-switched networks,” IEEE/ACM Trans. Networking, Vol. 8,
No. 4, pp. 479-492, Aug. 2000.

[7] C.-S. Li, Y. Ofek, A. Segall and K. Sohraby, “Pseudo-isochronous cell
forwarding,” Computer Networks and ISDN Systems, 30:2359-2372,
1998.

[8] C.-S. Li, Y. Ofek, and M. Yung, “Time-driven priority flow control for
real-time heterogeneous internetworking,” IEEE Int. Conf. on Computer
Communications (INFOCOM 1996), San Francisco (USA), Mar. 1996.

[9] D. Grieco, A. Pattavina and Y. Ofek, “Fractional Lambda Switching for
Flexible Bandwidth Provisioning in WDM Networks: Principles and
Performance,” Photonic Network Communications, Vol. 9, No 3, May
2005, pp. 281-296.

[10] M. Baldi, G. Marchetto, G. Galante, F. Risso, R. Scopigno, F. Stirano,
“Time Driven Priority Router Implementation and First Experiments,”
IEEE Int. Conf. on Communications (ICC 2006), Istanbul (Turkey), June
2006.

[11] D. Agrawal, M. Baldi, M. Corrà, G. Fontana, G. Marchetto, V. T.
Nguyen, Y. Ofek, D. Severina, H. T. Truong, O. Zadedyurina, “Ultra
Scalable UTC-based Pipeline Forwarding Switch for Streaming IP
Traffic,” IEEE Int. Conf. on Computer Communications (INFOCOM
2006) – Posters & demos, Barcelona (Spain), Apr. 2006.

[12] M. Baldi, R. Giacomelli, G. Marchetto, A. Vesco, “On the Deployment
of Pipeline Forwarding in a Nation-wide Internet Service Provider
Network,” 2007 International Conference on Broadband Network &
Multimedia Technology (IC-BNMT2007), Beijing (China), Sep. 2007.

[13] S. J. Golestani, “A Stop-and-Go queuing framework for congestion
management,” ACM SIGCOMM 1990, Vol. 20, No. 4, Sep. 1990.

[14] M. Baldi, G. Marchetto, Y. Ofek, “A scalable solution for engineering
streaming traffic in the Future Internet,” Computer Networks, Vol. 51,
No. 14, pp. 4092-4111, Oct. 2007.

[15] D. Mills, “Network Time Protocol (Version 3) specification,
implementation and analysis,” IETF Std. RFC 1305, Mar. 1992.

[16] IEEE Standard committee, “Precision clock synchronization protocol for
networked measurement and control systems,” IEEE Std. 1588, 2004.

[17] J. Gildred et al., “Synchronous Ethernet,” Pioneer Research Center
specification draft v0.39, Nov. 2003.

[18] Y. Ofek, “Generating a fault tolerant global clock using high-speed
control signals for the MetaNet architecture,” IEEE Trans,
Communications, Vol. 42, No. 5, pp. 2179–2188, May 1994.

[19] O. Gurewitz, I. Cidon, M. Sidi. “Network classless time protocol based
on clock offset optimization,” IEEE/ACM Trans. Networking, Vol. 14,
No. 4, pp. 876-888, Aug. 2006.

[20] BTexact Technologies, “Juniper Networks T640 performance test
report,” Technical Report, 2003.

Mario Baldi is Associate Professor at the Department
of Control and Computer Engineering of Politecnico
di Torino, Italy, and Vice Dean of the PoliTong Sino-
Italian Campus in Shanghai, China. He holds a M.S.
Degree in Electrical Engineering and a Ph.D. in
Computer and Systems Engineering. His research
interests include high performance switching, optical
networking, and computer networks in general.

Guido Marchetto is a post-doctoral fellow at the
Department of Control and Computer Engineering of
Politecnico di Torino. He received the Ph.D. Degree
in Computer and System Engineering from
Politecnico di Torino in April 2008.
His research topics are packet scheduling and Quality
of Service in packet switched network. His interests
include network protocols and network architectures.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 64000
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 64000
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 64000
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

