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ABSTRACT 
The Internet has the potential to become the ubiquitous and 
universal means of accessing any type of information, whether 
pulled by the user or pushed by a provider. However, in order to be 
the infrastructure of choice for this role, the Internet must represent 
a business opportunity to information providers or, at least, be 
economically self-sustainable. In other words, Internet technology 
must support services in such a way that both people are willing to 
pay for them and the cost of delivering them is low. The former 
implies that services, besides being appealing, must be reliable and 
of reasonably high and persistent quality. The latter requires low 
complexity technological solutions and convergence to a single 
network infrastructure that supports, in an integrated manner, 
traditional Internet applications (e.g., web, e-mail, and file 
sharing), telephony, and video, a.k.a. triple play. Since today’s 
solutions resort to overprovisioning to satisfy the quality 
requirements, they fail to minimize costs due to low resource 
utilization efficiency. This paper presents a low complexity 
solution for proving triple play services as it enables integrating 
different applications so that each received the service it requires, 
possibly in a guaranteed fashion, while ensuring high resource 
utilization efficiency.  

Preferred Topic Areas: 1c, 2d, 2e, 4c 

1. INTRODUCTION 
The Internet has been a major and successful cultural 
phenomenon in the past few years. The drivers to its success 
have been the convenience and benefits of applications like 
e-mail and web browsing, combined with low cost and wide 
reach. However, today the Internet needs something else to 
remain successful and maintain its promise as a ubiquitous 
and universal means of accessing any type of information: it 
must be a profitable business or, at least, economically self-
sustainable. 
In order to achieve this objective, services people are willing 
to pay for must be offered over the Internet and the cost of 
delivering them must be low. In order to be able to properly 
bill for such services, they must be reliable and feature high 
and persistent quality. Moreover, a triple play solution with 
low technological complexity is needed to support on a 
single network infrastructure traditional Internet applications 
(e.g., web, e-mail, and file sharing), telephony, and video.  
Current solutions to integrating traffic of heterogeneous 
nature on the same network infrastructure leverage on 
overprovisioning to ensure satisfactory quality. This leads to 
poor utilization of network resources, thus conflicting with 
the objective of minimizing costs. This paper presents an 
optimal solution for supporting triple play through IP 

networks, and specifically the Internet, as it offers: 
• Low complexity, hence high scalability of routers;  
• Quality of service guarantees (deterministic delay and 

jitter, no loss) for (UDP-based) constant bit rate (CBR) 
and variable bit rate (VBR) streaming applications; 

• Unmodified support for best-effort and differentiated 
services [6], which enables leaving unchanged 
• The service received by elastic, e.g., TCP-based, 

applications, and  
• Currently employed network design and traffic 

engineering practices and models. 
Proper and efficient support of streaming UDP-based 
applications is getting increasingly important due to the fact 
that more and more streaming media traffic (e.g., Skype) is 
transported over the Internet and IP networks in general 
using UDP. Such applications need a minimum level of 
service quality in order to operate properly and current 
approaches to offer controlled quality based on 
overprovisioning do not scale. Moreover, applications such 
as telephony, videoconferencing, and various types of 
entertainment services based on video are promising sources 
of significant revenue. 
The network architecture presented in this paper has recently 
been demonstrated [5][9] by means of a testbed based on the 
prototypal implementations of a PC-based router [3] and an 
opto-electronic switch [5]. Section 2 discusses the basic 
operating principles of UTC-based pipeline forwarding, the 
technology underlying the presented solution to triple play 
support. Section 3 outlines a network architecture enabling 
incremental deployment of the presented solution over the 
exiting network infrastructures, such as the Internet. Finally, 
Section 4 discusses how to support various classes of 
applications such as SIP based telephony, peer-to-peer 
overlay-based  conferencing (e.g., Skype), and video-based 
services. 

2. UTC-BASED PIPELINE FORWARDING 
Implementing UTC-based pipeline forwarding requires 
packet switches to be synchronized with a common time 
reference (CTR) [1]. UTC can be ubiquitously received 
from a time-distribution system such as the global 
positioning system (GPS) and, in the future, from Galileo. 
Consequently, it constitutes a natural candidate for a 
globally available CTR. 

2.1 Basic Principles 
In the following scheme IP packet switches are synchronized 
and use a basic time period called time frame (TF). The TF 
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duration is derived from the UTC second. Time frames are 
grouped into time cycles (TCs) and TCs are further 
organized into super cycles, each of which typically lasts one 
UTC second. The transmission capacity during each TF is 
partially or totally reserved to one or more flows during a 
resource reservation procedure. The TC provides the basis 
for a periodic repetition of the reservation, while the super 
cycle offers a basis for reservations with a period longer than 
a TC. This results in a periodic schedule for packets to be 
switched and forwarded, which is repeated every TC or 
every super cycle. For example a 125 μs time frame is 
obtained by dividing the UTC second by 8000; sequences of 
100 time frames are grouped into one TC, and runs of 80 
TCs are comprised in one super cycle (i.e., one UTC 
second). 
The basic pipeline forwarding operation is regulated by two 
simple rules: (i) all packets that must be sent in TF t by a 
node must be in its output ports' buffers at the end of TF t-1, 
and (ii) a packet p transmitted in TF t by a node n must be 
transmitted in TF t+dp by node n+1, where dp is an integer 
constant called forwarding delay. The value of the 
forwarding delay is determined at resource-reservation time 
and must be large enough to satisfy (i). 
The periodic scheduling within each node results in a 
periodic packet forwarding across the network, which is also 
referred to as pipelined forwarding for the ordered, step-by-
step fashion, with which packets travel toward their 
destination. UTC-based forwarding guarantees that reserved 
real-time traffic experiences: (i) bounded end-to-end delay, 
(ii) delay jitter lower than two TFs, and (iii) no congestion 
and resulting losses. 
In pipeline forwarding, a synchronous virtual pipe (SVP) is 
a predefined schedule for forwarding a pre-allocated amount 
of bytes during one or more TFs along a path of subsequent 
UTC-based switches. The SVP capacity is determined by the 
total number of bytes allocated in every TC for the SVP. For 
example, for a 10 ms TC, if 20000 bits are allocated during 
each of 2 TFs, the SVP capacity is 400 Kb/s. 
2.2 Implementation Options 
Two implementations of the pipeline forwarding were 
proposed: Time-Driven Switching (TDS) and Time-Driven 
Priority (TDP).  
Time-driven switching (TDS) was proposed to realize sub-
lambda or fractional lambda switching (FλS) in highly 
scalable dynamic optical networking [1], which requires 
minimum optical buffers. In the context of optical networks, 
SVPs are called fractional lambda pipes (FλPs). In TDS all 
packets in the same TF are switched the same way. 
Consequently, header processing is not required, which 
results in low complexity (hence high scalability) and 
enables optical implementation.  
Time-driven priority (TDP) [1] is a synchronous packet 
scheduling technique that implements UTC-based pipeline 
forwarding and can be combined with conventional IP 

routing to achieve the abovementioned flexibility. Operation 
in accordance to pipeline forwarding principles ensures 
deterministic quality of service and low complexity packet 
scheduling. Specifically, packets scheduled for transmission 
during a TF are given maximum priority; if resources have 
been properly reserved, all scheduled packets will be at the 
output port and transmitted before their TF ends. 
2.3 Non-pipelined Traffic 
Non-pipelined IP packets, i.e., packets that are not part of a 
SVP (e.g., IP best-effort packets), can be transmitted during 
any unused portion of a TF, whether it is not reserved or it is 
reserved but currently unused. Consequently, links can be 
fully utilized even if flows with reserved resources generate 
fewer packets than expected. 
Each TDP node performs statistical multiplexing of best-
effort traffic, i.e., inserts best-effort packets in unused TF 
portions.  Therefore, SVPs are not at all TDM-like circuits: 
SVPs are virtual channels providing guaranteed service in 
terms of bandwidth, delay, and delay jitter, but fractions of 
the link capacity not used by SVP traffic can be fully 
utilized. Moreover, any service discipline can be applied to 
packets being transmitted in unused TF portions. For 
example, various traffic classes according to the 
Differentiated Service (DiffServ) paradigm [6] could be 
implemented for non-pipelined packets. In summary, 
pipeline forwarding is a best-of-breed technology combining 
the advantages of circuit switching (i.e., predictable service 
and guaranteed quality of service) and packet switching 
(statistical multiplexing with full link utilization) that 
enables a true integrated services network providing optimal 
support to both multimedia and elastic applications. 
Since in TDS switching is based on time, statistical 
multiplexing of best-effort traffic might not provided at each 
node. Nevertheless, best effort packets can be inserted at the 
TDS network edge in any unused portion of a proper SVP 
based on their destination. Although with somewhat limited 
flexibility compared to TDP, statistical multiplexing of best-
effort packets and high link utilization can be achieved. 
Alternatively, a TDS switch can be designed to include the 
capability for extracting best-effort packets from the flow 
entering an input interface by means of a simple filter (for 
example, based on one bit, e.g., in the DiffServ field, of the 
packet header). Separated packets are handled by a 
functional unit performing conventional IP routing and 
“injected” in the flow of packets exiting the proper interface 
whenever it is idle. Scalability is not compromised as 
pipelined packets are handled on a fast data path performing 
TDS operation (i.e., switched based on their TF). Only best-
effort packets — which possibly are a small fraction and 
anyway do not expect any specific service — use a slower 
data path. 

3. DEPLOYMENT  
3.1 General Network Architecture  
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Fully benefiting from UTC-based pipeline forwarding 
requires providing network nodes and end-systems with a 
CTR and implement network applications in a way that they 
use it to maximize the quality of the received service. 
However, the Internet is currently based on asynchronous IP 
packet switches and IP hosts. Thus, especially in an initial 
deployment phase, the UTC-based pipeline forwarding must 
coexist and interoperate with current asynchronous packet 
switches and hosts. 

TDS interface
TDS switch

High-capacity
(TDS)  backbone

TDP router

Access (TDP) network
(Asynchronous) access network

End-system with time-driven
application and TDP scheduler

Time-driven shaper

Asynchronous end-system

 
Fig. 1. Network architecture for the deployment of 

pipeline forwarding 
Fig. 1 depicts a possible network architecture where senders 
generate asynchronous traffic that passes through an 
asynchronous access network towards the first TDP access 
node. Edge TDP routers are connected to traditional 
asynchronous IP routers through a SVP interface that 
controls access to the pipeline forwarding network by 
policing and shaping the incoming traffic. Fig. 1 also shows 
how, in order to get the best out of pipeline forwarding, TDS 
switches are deployed in the network core, while TDP 
routers are used at the backbone edge. In fact, the former 
feature particularly low complexity, hence high performance 
at low cost, while the latter are being used where scalability 
is not a primary concern, but their flexibility is particularly 
beneficial.  
It is worth highlighting that it is not mandatory for each node 
to receive UTC from an external source (such as GPS or 
Galileo) in order to implement a ubiquitous CTR. The 
network can be organized in areas where one node externally 
receiving UTC distributes timing information to other nodes. 
Various alternatives with significantly different complexity 
and performance are possible; as an example, CTR 
distribution among TDP routers could be based on the 
alternate bit protocol presented in [3] for TF delineation and 
time-stamping. Interestingly, the time uncertainty resulting 
from such a low complexity and robust CTR distribution 
mechanism does not affect the correct operation of TDP 
routers. Although distribution of the CTR within the network 
is subject of ongoing analytical and experimental work, it 
can be easily anticipated that distribution of CTR can be 
more suitable for TDP routers, where complexity is not a 
primary concern and additional processing is not an issue, 
while deployment of an external source might be the most 
cost effective solution in TDS switches, where minimal 

complexity and possibly no packet processing are key to 
preserve scalability and make optical implementation 
feasible.  
3.2 Resource Reservation 
When a SVP is set up, resources — in the form of the 
capability of transmitting a certain amount of bits during 
specific TFs — are reserved for packets carried by the SVP. 
According to the Integrated Services (IntServ) model [7] 
quality of service (QoS) is guaranteed to single packet flows 
by reserving resources on a per-flow basis. This approach 
proved not scalable due to the large number of flows nodes 
in the core of the network deal with. IntServ scalability 
issues concern both the data and control plane. In fact, per-
flow queuing and complex scheduling is required on the data 
path, while the control plane must process signaling and 
store booking information for each flow traversing a node. 
Pipeline forwarding does not share scalability issues related 
to the data plane, since it can provide per-flow service 
guarantees without per-flow queuing. Also the control plane 
is simpler since resource information consists in arrays of 
counters (or bits in TDS) accounting for reserved or 
available capacity during TFs and processing booking 
requests involves simple addition and subtraction (or logical 
OR operations in TDS). Nevertheless, avoiding per-flow 
reservation might be preferable given the large amount of 
signaling messages that nodes must potentially process when 
be deployed in the core. 
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Fig. 2. Per-flow bandwidth reservation with access 

bandwidth broker 
An access bandwidth broker (ABB) [7] at the edges of an 
SVP can handle signaling requests from applications whose 
packet flows are to traverse the SVP and determine the 
availability of resources within the SVP. If a request is 
accepted, the ABB reserves a fraction of the SVP resources 
to the corresponding flow. As shown in Fig. 2, intermediate 
switches are not involved in the signaling operation, but the 
micro-flow will receive deterministic QoS guarantees, even 
though intermediate switches on the SVP do not have any 
awareness of the micro-flow.  

4. APPLICATION SUPPORT 
This section discusses how pipeline forwarding can be 
deployed to support various applications currently widely 
used over the Internet. The discussion is organized in two 
parts, which are complementary aspects of such support: (i) 
how packets generated by such applications can be 
transported through the network, and (ii) how existing 



 4

applications can accommodate the needed signaling and 
resource reservation procedures key for pipeline forwarding 
to be able to offer service guarantees. 

4.1 Data Transfer 
The issue is addressed organizing applications into various 
classes based on the characteristics of their traffic —e.g., 
streaming, periodic, irregular — and of the service they need 
— e.g., real-time, minimum bandwidth, elastic. 

4.1.1 Streaming Applications with Periodic Bursts 
Pipeline forwarding of traffic generated by real-time 
streaming applications was addressed in detail by previous 
work (see, for example, [3]). The following subsections 
include only a summary of the issue to provide a basis for 
discussion; the reader is redirected to existing literature for 
details. 
Streaming applications are characterized by more or less 
continuous, long lasting flows of packets, i.e., the duration 
of a flow is much longer than the inter-packet time. This 
justifies the signaling and resource reservation overhead 
required to set-up an SVP. If the packet flow has a constant 
bit rate (e.g., telephony, voice, audio streaming, constant bit 
rate video streaming), resources can be reserved in a number 
of possibly equally spaced TFs in such a way that the 
corresponding bit rate is greater than or equal to the average 
bit rate of the flow rate. This guarantees that packets will be 
transported though the network without loss, with known 
delay, and with limited jitter bounded by the maximum time 
difference between two TFs with an allocation for the flow. 
However, many streaming applications deployed today 
generate periodic bursty traffic. Consider, for example, both 
audio and video transmission. Audio is most often encoded 
at (low) constant bit rate, however, encoded samples are not 
sent out immediately as enough of them have to be gathered 
first to assemble a payload large enough. In fact, the 
protocol stack commonly deployed for real-time applications 
on IP networks (i.e., data-link protocol, IP, UDP, RTP) 
results in headers overall longer than 40 bytes. 
Consequently, packets exit the sending end system at 
constant intervals, i.e., each packet can be seen as a short 
periodic burst whose period depends on the encoder output 
rate and the chosen payload size. 
Digital video is based on capturing, digitizing, compressing, 
and encoding video frames at periodic intervals ranging 
from 25 ms to somewhere around 1 s for very low quality, 
low bandwidth video. Some encoding algorithms compress 
and encode each video frame by itself1, package the resulting 
bytes into one or more packets, and send them in the 
network. This results in a periodic burst of packets whose 

                                                           
1 Such video encoders generally feature higher robustness, lower 

computational complexity, shorter encoding delay, but lower 
compression rates; consequently, are not the most commonly 
deployed.  

period is the video frame rate (i.e., ranging from 1 to 40 
bursts per second). 
Given that the source generates traffic periodically and 
pipeline forwarding is based on periodic scheduling, if 
resources can be reserved with the same period and packet 
burst can be transmitted right before the TF in which a 
reservation was made — which implies some level of 
synchronization between the video source and the network 
— end-to-end delay can be minimized, as analyzed in detail 
in [3]. If the video source is not synchronized with the 
network, additional delay is introduced by the interface; 
however, if the reservation has been properly performed, the 
video flow is carried with deterministic quality, i.e., without 
congestion and with bounded delay. 
More effective video encoding algorithms achieve better 
compression, i.e., lower flow bit rates, by eliminating 
temporal redundancy between subsequent frames. As a 
consequence, some video codecs encode a number of 
frames, called P-frames, by reference to a previous one, 
called an I-frame, thus producing a smaller amount of bits. 
Simply put, the larger the ratio between the number of P-
frames and the number of I-frames, the smaller the bit rate of 
the video stream. Obviously, I-frames result in the 
transmission of more packets than P-frames and the 
corresponding flow is characterized by bursts at regular 
intervals, i.e., the video frame period, but with different size. 
Such a flow is said to have a complex periodicity and it can 
be accommodated by reserving a different amount of 
transmission resources in different TFs. Some level of 
synchronization between the video source and the network is 
needed in order to avoid a large delay at the SVP interface. 
Bursts generated by sources with both normal and complex 
periodicity might not have constant size. A burst smaller 
than the corresponding capacity allocation is not problematic 
since unused bandwidth will be exploited by non-pipelined 
traffic, i.e., the extra allocated capacity is not wasted. A 
burst larger than the corresponding allocation must be 
properly handled by the SVP interface where a proper policy 
must be implemented. As an example, packets exceeding 
their reservation can be either discarded or forwarded as 
best-effort by the SVP interface. Alternatively, if the 
pipeline forwarding network implements a differentiated 
service (DiffServ) on non-pipelined traffic, non compliant 
packets can be marked as belonging to a class receiving, for 
example, an expedite forwarding service. Although, in 
accordance to the DiffServ paradigm, no quality of service is 
guaranteed to packets exceeding their reservation, the 
differentiated service they receive might be good enough. 
In summary, pipeline forwarding is particularly suitable to 
real-time streaming applications with periodic bursts as they 
can receive deterministic service with minimum delay. 
However, the deployment of pipeline forwarding is 
advantageous also for applications that do not have real-time 
requirements, but simply need their data stream to be 
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transferred through the network. In this case, the bounded, 
possibly minimum, delivery time comes as a bonus as it does 
not have any cost in terms of additional network node 
complexity or extra resource allocation. 

4.1.2 Real-time Non-streaming Applications 
The pipeline forwarding deployment model presented in this 
paper is not fitted to real-time applications that generate 
traffic only occasionally. In fact, it is not practical to setup 
an SVP before transmitting an occasional packet (burst) and 
tear it down right afterwards. Depending on the size of the 
bursts and how often the source generates traffic, at least two 
approaches, or a combination thereof, are possible. 
As a first option, a SVP is setup by reserving transmission 
capacity in one or more TFs beforehand. Hence, when the 
source generates traffic, it can be transported through the 
SVP without requiring previous signaling. Reserved capacity 
will not be used whenever the source does not transmit 
longer than the time between two reserved TFs, e.g., a TC 
duration. Nevertheless, such capacity is not wasted as it can 
be used for transmitting non-pipelined traffic. If reservation 
efficiency, i.e., the fraction of resources reserved that are 
actually used, is a concern, than this approach is not 
advisable for applications that generate traffic with either a 
period much longer of the TC or very large bursts. 
Another option involves implementing a differentiated 
service (DiffServ) of non-pipelined traffic; occasional real-
time packets are marked as belonging to a class receiving, 
for example, an expedite forwarding service. In general, any 
other policy commonly applied on such traffic on a 
conventional IP network, like giving real-time packets static 
priority over the rest of the traffic, can equally be 
implemented in the context of a pipeline forwarding 
network. However, given that in the latter case periodic 
traffic is handled separately, the amount of traffic in the 
differentiated class or at high priority will be limited. This 
simplifies network and traffic engineering and complying 
with the main underlying assumption of the DiffServ 
paradigm: differentiated traffic shall be a small fraction of 
the network capacity. Although, in accordance to the 
DiffServ paradigm, no quality of service is guaranteed to the 
above non-pipelined packets, a (fraction of transmission 
capacity in a) number of TFs can be left unallocated in order 
to ensure that enough transmission resources are available to 
non-pipelined traffic so that the differentiated service they 
receive be good enough. 

4.1.3 Non-real-time Elastic Applications 
Today most data exchanges over IP networks are carried out 
over TCP by applications such as file transfers, web 
browsing sessions, e-mail transfer. These applications, that 
usually have no or very loose real-time requirements, are 
said to be elastic as they can operate with widely ranging 
services. As an example, whether data can be transferred at a 
high bit rate (say, 10 Mb/s) or at a very low bit rate (e.g., a 
few Kb/s), a file can anyway be transferred successfully; the 

larger the available bandwidth, the shorter the time needed2. 
TCP, by varying the size of its transmission window, adapts 
to resource availability in the network trying to make sure 
that applications achieve maximum performance.  
Various approaches can be deployed to support elastic 
applications on TDP networks, the main characterization 
being based on whether their traffic is pipelined or not. For 
example, it can be transferred with best-effort service, which 
maintains the found by TCP on today’s Internet. As a 
variant, differentiated services can be implemented for non-
pipelined traffic and packets from elastic applications can be 
assigned to DiffServ classes based on any policy as possibly 
deployed on conventional IP networks. 
Alternatively, a SVP with given allocated capacity can be 
setup for each application. Since packet transmission is 
regulated by TCP flow control mechanism, the application is 
not necessarily able to exploit all the reserved bandwidth. In 
fact, TCP throughput is limited by the transmission window 
size over the round trip time packets spend traveling from 
source to destination and acknowledgments back. At the 
beginning the transmission window size is small; in a first 
startup phase the transmission window increases 
exponentially, and then its size is incremented linearly up to 
its maximum in order to achieve a transfer rate as high as 
possible. Consequently, if the maximum size of the 
transmission window is not large enough compared to the 
round trip time, part of the allocated bandwidth might not be 
used. On the other hand, when the transmission rate equals 
the bandwidth allocated to the SVP, packets exceeding the 
reservation are, for example, sent as best-effort traffic. 
Consequently, if the network is congested they can be 
discarded, thus triggering a reduction of the transmission 
window. Depending on the amount of non-pipelined traffic 
in the network and the network diameter, the transfer rate 
experienced by an application might be either smaller or 
larger than the amount of reserved bandwidth. 
A different transport protocol could be used in order to take 
full advantage of pipeline forwarding. Deployment of UDP 
is not an option as most elastic applications deployed over 
the Internet require a reliable service. However, only error 
control and flow control capability is required by a transport 
protocol operating on a pipeline forwarding network. In fact, 
as long as the bandwidth reserved to an SVP is not exceeded 
packets, are not affected by congestion, i.e., they do not get 
dropped, and the transport protocol needs only to deal with 
transmission errors and packet loss within end-system. For 
example, flow control could be rate based and driven by the 
bandwidth reserved to the corresponding SVP. Alternatively, 
such a protocol could be implemented as a variant of TCP 
                                                           
2 Notice that the same does not apply for most streaming 

applications that require a minimum service in order to be 
usable. Consider, for example, video broadcasting: if a minimum 
bandwidth is not obtained, the received video stream cannot be 
properly viewed.  
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and possibly try to never reduce rate below reserved 
bandwidth and exploit transmission of non-pipelined packets 
in order to achieve higher transmission rate. The design, 
implementation, and performance evaluation of such a 
transport protocol are outside the scope of this paper and are 
left for future investigation. 

4.2 Control Architecture 
In general, in order to achieve deterministic quality of 
service, applications need to reserve resources. Although 
pipeline forwarding SVPs can be used to provision 
bandwidth on backbones, in order to fully benefit from 
pipeline forwarding transmission capacity within TFs should 
be reserved to single applications prior them starting 
generating packets. The reminder of this section discusses 
possible ways of introducing signaling in the communication 
architecture of a few widespread applications. The aim is not 
to provide detailed guidelines for the implementation of a 
triple play architecture based on pipeline forwarding, but 
rather to give a sense of how such a novel paradigm can be 
easily accommodated.  
The one pass with advertisement reservation model adopted 
by the Resource reSerVation Protocol (RSVP) [7] is well 
suited to implementing the steps required to find a schedule 
through a pipeline forwarding network as outlined in [1]. 
Consequently, any reservation model and signaling solution 
previously elaborated in the context of the Integrated 
Services (IntServ) [7] architecture can be simply adopted for 
pipeline forwarding networks. 
Services based on video streaming, such as video 
broadcasting and video on demand, are usually centered 
around a video server distributing content. The Real-Time 
Streaming Protocol (RTSP) is the standard protocol for a 
client to interact with the video server to choose and control 
the content it intends to receive. When a server receives a 
request to start streaming a given content, knowing the 
profile of the corresponding packet and the needed service, 
it can issue a signaling message (e.g., an RSVP PATH 
message) to gather information on resource availability 
across the network. The message crosses the network along 
the path the video stream will later follow probing for 
available resources in each TF. Upon reception of the 
signaling message, the client can select available 
transmission capacity in a suitable number of TFs and 
generates a reservation message (e.g., an RSVP RESV 
message) towards the server, which specifies the amount of 
resources to be allocated to the video stream in each TF. 
Notice that if the server or, as it is most likely in initial 
introductory phases, the client are not capable of performing 
the reservation, an access node to the pipeline forwarding 
network can infer the characteristics and QoS requirements 
of a video flow by intercepting RTSP messages and 
participate in the signaling procedure on behalf of the end-
system (see the network architecture depicted in Fig. 1). 

Although other solutions exist, the Session Invitation 
Protocol (SIP) is currently the preferred standard option for 
audio and video conferencing over IP networks. Although 
Calling and called parties initially get in touch through an 
infrastructure of servers (i.e., SIP proxies, location services, 
etc.) they eventually exchange messages to negotiate the 
parameters of their media session(s) — such as the audio 
codec to be used for a phone call. Pipeline forwarding aware 
end-systems can initiate resource reservation procedures 
once they have agreed on the characteristics of the media 
sessions, thus knowing the profile of the corresponding 
traffic and the required QoS. When pipeline forwarding 
unaware end-systems are deployed, access nodes can 
intercept SIP messages to infer the characteristics and QoS 
requirements of media sessions and carry out signaling 
procedures on behalf of the end-systems. 
Today audio and video conferencing solutions based on a 
peer-to-peer overlay to forward media streams, such as 
Skype, are gaining significant importance and diffusion as 
they are capable of working around firewalls and network 
address translation (NAT) functionalities. In general, when a 
peer-to-peer overlay is deployed, resource reservation might 
follow or accompany the procedures that lead to establishing 
peering between nodes. Pipeline forwarding might be 
particularly beneficial when the peer-to-peer paradigm is 
exploited. In fact, media might travel along a sub-optimal 
path through a number of relay nodes. Given the delay 
introduced by relay nodes and the non-minimal length of the 
path, end-to-end delay becomes an even more critical issue 
and deploying pipeline forwarding might be the only viable 
solution in certain operating conditions to keep it within 
acceptable bounds. 
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