
 1

Triple Play Support for the Next Generation Internet
Mario Baldi

Politecnico di Torino — Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi, 24 — 10129 Torino — Italy

+39 011 564 7067 — mario.baldi@polito.it

ABSTRACT
The Internet has the potential to become the ubiquitous and
universal means of accessing any type of information, whether
pulled by the user or pushed by a provider. However, in order to be
the infrastructure of choice for this role, the Internet must represent
a business opportunity to information providers or, at least, be
economically self-sustainable. In other words, Internet technology
must support services in such a way that both people are willing to
pay for them and the cost of delivering them is low. The former
implies that services, besides being appealing, must be reliable and
of reasonably high and persistent quality. The latter requires low
complexity technological solutions and convergence to a single
network infrastructure that supports, in an integrated manner,
traditional Internet applications (e.g., web, e-mail, and file
sharing), telephony, and video, a.k.a. triple play. Since today’s
solutions resort to overprovisioning to satisfy the quality
requirements, they fail to minimize costs due to low resource
utilization efficiency. This paper presents a low complexity
solution for proving triple play services as it enables integrating
different applications so that each received the service it requires,
possibly in a guaranteed fashion, while ensuring high resource
utilization efficiency.

Preferred Topic Areas: 1c, 2d, 2e, 4c

1. INTRODUCTION
The Internet has been a major and successful cultural
phenomenon in the past few years. The drivers to its success
have been the convenience and benefits of applications like
e-mail and web browsing, combined with low cost and wide
reach. However, today the Internet needs something else to
remain successful and maintain its promise as a ubiquitous
and universal means of accessing any type of information: it
must be a profitable business or, at least, economically self-
sustainable.
In order to achieve this objective, services people are willing
to pay for must be offered over the Internet and the cost of
delivering them must be low. In order to be able to properly
bill for such services, they must be reliable and feature high
and persistent quality. Moreover, a triple play solution with
low technological complexity is needed to support on a
single network infrastructure traditional Internet applications
(e.g., web, e-mail, and file sharing), telephony, and video.
Current solutions to integrating traffic of heterogeneous
nature on the same network infrastructure leverage on
overprovisioning to ensure satisfactory quality. This leads to
poor utilization of network resources, thus conflicting with
the objective of minimizing costs. This paper presents an
optimal solution for supporting triple play through IP

networks, and specifically the Internet, as it offers:
• Low complexity, hence high scalability of routers;
• Quality of service guarantees (deterministic delay and

jitter, no loss) for (UDP-based) constant bit rate (CBR)
and variable bit rate (VBR) streaming applications;

• Unmodified support for best-effort and differentiated
services [6], which enables leaving unchanged
• The service received by elastic, e.g., TCP-based,

applications, and
• Currently employed network design and traffic

engineering practices and models.
Proper and efficient support of streaming UDP-based
applications is getting increasingly important due to the fact
that more and more streaming media traffic (e.g., Skype) is
transported over the Internet and IP networks in general
using UDP. Such applications need a minimum level of
service quality in order to operate properly and current
approaches to offer controlled quality based on
overprovisioning do not scale. Moreover, applications such
as telephony, videoconferencing, and various types of
entertainment services based on video are promising sources
of significant revenue.
The network architecture presented in this paper has recently
been demonstrated [5][9] by means of a testbed based on the
prototypal implementations of a PC-based router [3] and an
opto-electronic switch [5]. Section 2 discusses the basic
operating principles of UTC-based pipeline forwarding, the
technology underlying the presented solution to triple play
support. Section 3 outlines a network architecture enabling
incremental deployment of the presented solution over the
exiting network infrastructures, such as the Internet. Finally,
Section 4 discusses how to support various classes of
applications such as SIP based telephony, peer-to-peer
overlay-based conferencing (e.g., Skype), and video-based
services.

2. UTC-BASED PIPELINE FORWARDING
Implementing UTC-based pipeline forwarding requires
packet switches to be synchronized with a common time
reference (CTR) [1]. UTC can be ubiquitously received
from a time-distribution system such as the global
positioning system (GPS) and, in the future, from Galileo.
Consequently, it constitutes a natural candidate for a
globally available CTR.

2.1 Basic Principles
In the following scheme IP packet switches are synchronized
and use a basic time period called time frame (TF). The TF

 2

duration is derived from the UTC second. Time frames are
grouped into time cycles (TCs) and TCs are further
organized into super cycles, each of which typically lasts one
UTC second. The transmission capacity during each TF is
partially or totally reserved to one or more flows during a
resource reservation procedure. The TC provides the basis
for a periodic repetition of the reservation, while the super
cycle offers a basis for reservations with a period longer than
a TC. This results in a periodic schedule for packets to be
switched and forwarded, which is repeated every TC or
every super cycle. For example a 125 μs time frame is
obtained by dividing the UTC second by 8000; sequences of
100 time frames are grouped into one TC, and runs of 80
TCs are comprised in one super cycle (i.e., one UTC
second).
The basic pipeline forwarding operation is regulated by two
simple rules: (i) all packets that must be sent in TF t by a
node must be in its output ports' buffers at the end of TF t-1,
and (ii) a packet p transmitted in TF t by a node n must be
transmitted in TF t+dp by node n+1, where dp is an integer
constant called forwarding delay. The value of the
forwarding delay is determined at resource-reservation time
and must be large enough to satisfy (i).
The periodic scheduling within each node results in a
periodic packet forwarding across the network, which is also
referred to as pipelined forwarding for the ordered, step-by-
step fashion, with which packets travel toward their
destination. UTC-based forwarding guarantees that reserved
real-time traffic experiences: (i) bounded end-to-end delay,
(ii) delay jitter lower than two TFs, and (iii) no congestion
and resulting losses.
In pipeline forwarding, a synchronous virtual pipe (SVP) is
a predefined schedule for forwarding a pre-allocated amount
of bytes during one or more TFs along a path of subsequent
UTC-based switches. The SVP capacity is determined by the
total number of bytes allocated in every TC for the SVP. For
example, for a 10 ms TC, if 20000 bits are allocated during
each of 2 TFs, the SVP capacity is 400 Kb/s.
2.2 Implementation Options
Two implementations of the pipeline forwarding were
proposed: Time-Driven Switching (TDS) and Time-Driven
Priority (TDP).
Time-driven switching (TDS) was proposed to realize sub-
lambda or fractional lambda switching (FλS) in highly
scalable dynamic optical networking [1], which requires
minimum optical buffers. In the context of optical networks,
SVPs are called fractional lambda pipes (FλPs). In TDS all
packets in the same TF are switched the same way.
Consequently, header processing is not required, which
results in low complexity (hence high scalability) and
enables optical implementation.
Time-driven priority (TDP) [1] is a synchronous packet
scheduling technique that implements UTC-based pipeline
forwarding and can be combined with conventional IP

routing to achieve the abovementioned flexibility. Operation
in accordance to pipeline forwarding principles ensures
deterministic quality of service and low complexity packet
scheduling. Specifically, packets scheduled for transmission
during a TF are given maximum priority; if resources have
been properly reserved, all scheduled packets will be at the
output port and transmitted before their TF ends.
2.3 Non-pipelined Traffic
Non-pipelined IP packets, i.e., packets that are not part of a
SVP (e.g., IP best-effort packets), can be transmitted during
any unused portion of a TF, whether it is not reserved or it is
reserved but currently unused. Consequently, links can be
fully utilized even if flows with reserved resources generate
fewer packets than expected.
Each TDP node performs statistical multiplexing of best-
effort traffic, i.e., inserts best-effort packets in unused TF
portions. Therefore, SVPs are not at all TDM-like circuits:
SVPs are virtual channels providing guaranteed service in
terms of bandwidth, delay, and delay jitter, but fractions of
the link capacity not used by SVP traffic can be fully
utilized. Moreover, any service discipline can be applied to
packets being transmitted in unused TF portions. For
example, various traffic classes according to the
Differentiated Service (DiffServ) paradigm [6] could be
implemented for non-pipelined packets. In summary,
pipeline forwarding is a best-of-breed technology combining
the advantages of circuit switching (i.e., predictable service
and guaranteed quality of service) and packet switching
(statistical multiplexing with full link utilization) that
enables a true integrated services network providing optimal
support to both multimedia and elastic applications.
Since in TDS switching is based on time, statistical
multiplexing of best-effort traffic might not provided at each
node. Nevertheless, best effort packets can be inserted at the
TDS network edge in any unused portion of a proper SVP
based on their destination. Although with somewhat limited
flexibility compared to TDP, statistical multiplexing of best-
effort packets and high link utilization can be achieved.
Alternatively, a TDS switch can be designed to include the
capability for extracting best-effort packets from the flow
entering an input interface by means of a simple filter (for
example, based on one bit, e.g., in the DiffServ field, of the
packet header). Separated packets are handled by a
functional unit performing conventional IP routing and
“injected” in the flow of packets exiting the proper interface
whenever it is idle. Scalability is not compromised as
pipelined packets are handled on a fast data path performing
TDS operation (i.e., switched based on their TF). Only best-
effort packets — which possibly are a small fraction and
anyway do not expect any specific service — use a slower
data path.

3. DEPLOYMENT
3.1 General Network Architecture

 3

Fully benefiting from UTC-based pipeline forwarding
requires providing network nodes and end-systems with a
CTR and implement network applications in a way that they
use it to maximize the quality of the received service.
However, the Internet is currently based on asynchronous IP
packet switches and IP hosts. Thus, especially in an initial
deployment phase, the UTC-based pipeline forwarding must
coexist and interoperate with current asynchronous packet
switches and hosts.

TDS interface
TDS switch

High-capacity
(TDS) backbone

TDP router

Access (TDP) network
(Asynchronous) access network

End-system with time-driven
application and TDP scheduler

Time-driven shaper

Asynchronous end-system

Fig. 1. Network architecture for the deployment of

pipeline forwarding
Fig. 1 depicts a possible network architecture where senders
generate asynchronous traffic that passes through an
asynchronous access network towards the first TDP access
node. Edge TDP routers are connected to traditional
asynchronous IP routers through a SVP interface that
controls access to the pipeline forwarding network by
policing and shaping the incoming traffic. Fig. 1 also shows
how, in order to get the best out of pipeline forwarding, TDS
switches are deployed in the network core, while TDP
routers are used at the backbone edge. In fact, the former
feature particularly low complexity, hence high performance
at low cost, while the latter are being used where scalability
is not a primary concern, but their flexibility is particularly
beneficial.
It is worth highlighting that it is not mandatory for each node
to receive UTC from an external source (such as GPS or
Galileo) in order to implement a ubiquitous CTR. The
network can be organized in areas where one node externally
receiving UTC distributes timing information to other nodes.
Various alternatives with significantly different complexity
and performance are possible; as an example, CTR
distribution among TDP routers could be based on the
alternate bit protocol presented in [3] for TF delineation and
time-stamping. Interestingly, the time uncertainty resulting
from such a low complexity and robust CTR distribution
mechanism does not affect the correct operation of TDP
routers. Although distribution of the CTR within the network
is subject of ongoing analytical and experimental work, it
can be easily anticipated that distribution of CTR can be
more suitable for TDP routers, where complexity is not a
primary concern and additional processing is not an issue,
while deployment of an external source might be the most
cost effective solution in TDS switches, where minimal

complexity and possibly no packet processing are key to
preserve scalability and make optical implementation
feasible.
3.2 Resource Reservation
When a SVP is set up, resources — in the form of the
capability of transmitting a certain amount of bits during
specific TFs — are reserved for packets carried by the SVP.
According to the Integrated Services (IntServ) model [7]
quality of service (QoS) is guaranteed to single packet flows
by reserving resources on a per-flow basis. This approach
proved not scalable due to the large number of flows nodes
in the core of the network deal with. IntServ scalability
issues concern both the data and control plane. In fact, per-
flow queuing and complex scheduling is required on the data
path, while the control plane must process signaling and
store booking information for each flow traversing a node.
Pipeline forwarding does not share scalability issues related
to the data plane, since it can provide per-flow service
guarantees without per-flow queuing. Also the control plane
is simpler since resource information consists in arrays of
counters (or bits in TDS) accounting for reserved or
available capacity during TFs and processing booking
requests involves simple addition and subtraction (or logical
OR operations in TDS). Nevertheless, avoiding per-flow
reservation might be preferable given the large amount of
signaling messages that nodes must potentially process when
be deployed in the core.

Pipeline forwarding node with
Access Bandiwidth Broker

Flows

Pipeline forwarding node

SVP

Signaling

Fig. 2. Per-flow bandwidth reservation with access

bandwidth broker
An access bandwidth broker (ABB) [7] at the edges of an
SVP can handle signaling requests from applications whose
packet flows are to traverse the SVP and determine the
availability of resources within the SVP. If a request is
accepted, the ABB reserves a fraction of the SVP resources
to the corresponding flow. As shown in Fig. 2, intermediate
switches are not involved in the signaling operation, but the
micro-flow will receive deterministic QoS guarantees, even
though intermediate switches on the SVP do not have any
awareness of the micro-flow.

4. APPLICATION SUPPORT
This section discusses how pipeline forwarding can be
deployed to support various applications currently widely
used over the Internet. The discussion is organized in two
parts, which are complementary aspects of such support: (i)
how packets generated by such applications can be
transported through the network, and (ii) how existing

 4

applications can accommodate the needed signaling and
resource reservation procedures key for pipeline forwarding
to be able to offer service guarantees.

4.1 Data Transfer
The issue is addressed organizing applications into various
classes based on the characteristics of their traffic —e.g.,
streaming, periodic, irregular — and of the service they need
— e.g., real-time, minimum bandwidth, elastic.

4.1.1 Streaming Applications with Periodic Bursts
Pipeline forwarding of traffic generated by real-time
streaming applications was addressed in detail by previous
work (see, for example, [3]). The following subsections
include only a summary of the issue to provide a basis for
discussion; the reader is redirected to existing literature for
details.
Streaming applications are characterized by more or less
continuous, long lasting flows of packets, i.e., the duration
of a flow is much longer than the inter-packet time. This
justifies the signaling and resource reservation overhead
required to set-up an SVP. If the packet flow has a constant
bit rate (e.g., telephony, voice, audio streaming, constant bit
rate video streaming), resources can be reserved in a number
of possibly equally spaced TFs in such a way that the
corresponding bit rate is greater than or equal to the average
bit rate of the flow rate. This guarantees that packets will be
transported though the network without loss, with known
delay, and with limited jitter bounded by the maximum time
difference between two TFs with an allocation for the flow.
However, many streaming applications deployed today
generate periodic bursty traffic. Consider, for example, both
audio and video transmission. Audio is most often encoded
at (low) constant bit rate, however, encoded samples are not
sent out immediately as enough of them have to be gathered
first to assemble a payload large enough. In fact, the
protocol stack commonly deployed for real-time applications
on IP networks (i.e., data-link protocol, IP, UDP, RTP)
results in headers overall longer than 40 bytes.
Consequently, packets exit the sending end system at
constant intervals, i.e., each packet can be seen as a short
periodic burst whose period depends on the encoder output
rate and the chosen payload size.
Digital video is based on capturing, digitizing, compressing,
and encoding video frames at periodic intervals ranging
from 25 ms to somewhere around 1 s for very low quality,
low bandwidth video. Some encoding algorithms compress
and encode each video frame by itself1, package the resulting
bytes into one or more packets, and send them in the
network. This results in a periodic burst of packets whose

1 Such video encoders generally feature higher robustness, lower

computational complexity, shorter encoding delay, but lower
compression rates; consequently, are not the most commonly
deployed.

period is the video frame rate (i.e., ranging from 1 to 40
bursts per second).
Given that the source generates traffic periodically and
pipeline forwarding is based on periodic scheduling, if
resources can be reserved with the same period and packet
burst can be transmitted right before the TF in which a
reservation was made — which implies some level of
synchronization between the video source and the network
— end-to-end delay can be minimized, as analyzed in detail
in [3]. If the video source is not synchronized with the
network, additional delay is introduced by the interface;
however, if the reservation has been properly performed, the
video flow is carried with deterministic quality, i.e., without
congestion and with bounded delay.
More effective video encoding algorithms achieve better
compression, i.e., lower flow bit rates, by eliminating
temporal redundancy between subsequent frames. As a
consequence, some video codecs encode a number of
frames, called P-frames, by reference to a previous one,
called an I-frame, thus producing a smaller amount of bits.
Simply put, the larger the ratio between the number of P-
frames and the number of I-frames, the smaller the bit rate of
the video stream. Obviously, I-frames result in the
transmission of more packets than P-frames and the
corresponding flow is characterized by bursts at regular
intervals, i.e., the video frame period, but with different size.
Such a flow is said to have a complex periodicity and it can
be accommodated by reserving a different amount of
transmission resources in different TFs. Some level of
synchronization between the video source and the network is
needed in order to avoid a large delay at the SVP interface.
Bursts generated by sources with both normal and complex
periodicity might not have constant size. A burst smaller
than the corresponding capacity allocation is not problematic
since unused bandwidth will be exploited by non-pipelined
traffic, i.e., the extra allocated capacity is not wasted. A
burst larger than the corresponding allocation must be
properly handled by the SVP interface where a proper policy
must be implemented. As an example, packets exceeding
their reservation can be either discarded or forwarded as
best-effort by the SVP interface. Alternatively, if the
pipeline forwarding network implements a differentiated
service (DiffServ) on non-pipelined traffic, non compliant
packets can be marked as belonging to a class receiving, for
example, an expedite forwarding service. Although, in
accordance to the DiffServ paradigm, no quality of service is
guaranteed to packets exceeding their reservation, the
differentiated service they receive might be good enough.
In summary, pipeline forwarding is particularly suitable to
real-time streaming applications with periodic bursts as they
can receive deterministic service with minimum delay.
However, the deployment of pipeline forwarding is
advantageous also for applications that do not have real-time
requirements, but simply need their data stream to be

 5

transferred through the network. In this case, the bounded,
possibly minimum, delivery time comes as a bonus as it does
not have any cost in terms of additional network node
complexity or extra resource allocation.

4.1.2 Real-time Non-streaming Applications
The pipeline forwarding deployment model presented in this
paper is not fitted to real-time applications that generate
traffic only occasionally. In fact, it is not practical to setup
an SVP before transmitting an occasional packet (burst) and
tear it down right afterwards. Depending on the size of the
bursts and how often the source generates traffic, at least two
approaches, or a combination thereof, are possible.
As a first option, a SVP is setup by reserving transmission
capacity in one or more TFs beforehand. Hence, when the
source generates traffic, it can be transported through the
SVP without requiring previous signaling. Reserved capacity
will not be used whenever the source does not transmit
longer than the time between two reserved TFs, e.g., a TC
duration. Nevertheless, such capacity is not wasted as it can
be used for transmitting non-pipelined traffic. If reservation
efficiency, i.e., the fraction of resources reserved that are
actually used, is a concern, than this approach is not
advisable for applications that generate traffic with either a
period much longer of the TC or very large bursts.
Another option involves implementing a differentiated
service (DiffServ) of non-pipelined traffic; occasional real-
time packets are marked as belonging to a class receiving,
for example, an expedite forwarding service. In general, any
other policy commonly applied on such traffic on a
conventional IP network, like giving real-time packets static
priority over the rest of the traffic, can equally be
implemented in the context of a pipeline forwarding
network. However, given that in the latter case periodic
traffic is handled separately, the amount of traffic in the
differentiated class or at high priority will be limited. This
simplifies network and traffic engineering and complying
with the main underlying assumption of the DiffServ
paradigm: differentiated traffic shall be a small fraction of
the network capacity. Although, in accordance to the
DiffServ paradigm, no quality of service is guaranteed to the
above non-pipelined packets, a (fraction of transmission
capacity in a) number of TFs can be left unallocated in order
to ensure that enough transmission resources are available to
non-pipelined traffic so that the differentiated service they
receive be good enough.

4.1.3 Non-real-time Elastic Applications
Today most data exchanges over IP networks are carried out
over TCP by applications such as file transfers, web
browsing sessions, e-mail transfer. These applications, that
usually have no or very loose real-time requirements, are
said to be elastic as they can operate with widely ranging
services. As an example, whether data can be transferred at a
high bit rate (say, 10 Mb/s) or at a very low bit rate (e.g., a
few Kb/s), a file can anyway be transferred successfully; the

larger the available bandwidth, the shorter the time needed2.
TCP, by varying the size of its transmission window, adapts
to resource availability in the network trying to make sure
that applications achieve maximum performance.
Various approaches can be deployed to support elastic
applications on TDP networks, the main characterization
being based on whether their traffic is pipelined or not. For
example, it can be transferred with best-effort service, which
maintains the found by TCP on today’s Internet. As a
variant, differentiated services can be implemented for non-
pipelined traffic and packets from elastic applications can be
assigned to DiffServ classes based on any policy as possibly
deployed on conventional IP networks.
Alternatively, a SVP with given allocated capacity can be
setup for each application. Since packet transmission is
regulated by TCP flow control mechanism, the application is
not necessarily able to exploit all the reserved bandwidth. In
fact, TCP throughput is limited by the transmission window
size over the round trip time packets spend traveling from
source to destination and acknowledgments back. At the
beginning the transmission window size is small; in a first
startup phase the transmission window increases
exponentially, and then its size is incremented linearly up to
its maximum in order to achieve a transfer rate as high as
possible. Consequently, if the maximum size of the
transmission window is not large enough compared to the
round trip time, part of the allocated bandwidth might not be
used. On the other hand, when the transmission rate equals
the bandwidth allocated to the SVP, packets exceeding the
reservation are, for example, sent as best-effort traffic.
Consequently, if the network is congested they can be
discarded, thus triggering a reduction of the transmission
window. Depending on the amount of non-pipelined traffic
in the network and the network diameter, the transfer rate
experienced by an application might be either smaller or
larger than the amount of reserved bandwidth.
A different transport protocol could be used in order to take
full advantage of pipeline forwarding. Deployment of UDP
is not an option as most elastic applications deployed over
the Internet require a reliable service. However, only error
control and flow control capability is required by a transport
protocol operating on a pipeline forwarding network. In fact,
as long as the bandwidth reserved to an SVP is not exceeded
packets, are not affected by congestion, i.e., they do not get
dropped, and the transport protocol needs only to deal with
transmission errors and packet loss within end-system. For
example, flow control could be rate based and driven by the
bandwidth reserved to the corresponding SVP. Alternatively,
such a protocol could be implemented as a variant of TCP

2 Notice that the same does not apply for most streaming

applications that require a minimum service in order to be
usable. Consider, for example, video broadcasting: if a minimum
bandwidth is not obtained, the received video stream cannot be
properly viewed.

 6

and possibly try to never reduce rate below reserved
bandwidth and exploit transmission of non-pipelined packets
in order to achieve higher transmission rate. The design,
implementation, and performance evaluation of such a
transport protocol are outside the scope of this paper and are
left for future investigation.

4.2 Control Architecture
In general, in order to achieve deterministic quality of
service, applications need to reserve resources. Although
pipeline forwarding SVPs can be used to provision
bandwidth on backbones, in order to fully benefit from
pipeline forwarding transmission capacity within TFs should
be reserved to single applications prior them starting
generating packets. The reminder of this section discusses
possible ways of introducing signaling in the communication
architecture of a few widespread applications. The aim is not
to provide detailed guidelines for the implementation of a
triple play architecture based on pipeline forwarding, but
rather to give a sense of how such a novel paradigm can be
easily accommodated.
The one pass with advertisement reservation model adopted
by the Resource reSerVation Protocol (RSVP) [7] is well
suited to implementing the steps required to find a schedule
through a pipeline forwarding network as outlined in [1].
Consequently, any reservation model and signaling solution
previously elaborated in the context of the Integrated
Services (IntServ) [7] architecture can be simply adopted for
pipeline forwarding networks.
Services based on video streaming, such as video
broadcasting and video on demand, are usually centered
around a video server distributing content. The Real-Time
Streaming Protocol (RTSP) is the standard protocol for a
client to interact with the video server to choose and control
the content it intends to receive. When a server receives a
request to start streaming a given content, knowing the
profile of the corresponding packet and the needed service,
it can issue a signaling message (e.g., an RSVP PATH
message) to gather information on resource availability
across the network. The message crosses the network along
the path the video stream will later follow probing for
available resources in each TF. Upon reception of the
signaling message, the client can select available
transmission capacity in a suitable number of TFs and
generates a reservation message (e.g., an RSVP RESV
message) towards the server, which specifies the amount of
resources to be allocated to the video stream in each TF.
Notice that if the server or, as it is most likely in initial
introductory phases, the client are not capable of performing
the reservation, an access node to the pipeline forwarding
network can infer the characteristics and QoS requirements
of a video flow by intercepting RTSP messages and
participate in the signaling procedure on behalf of the end-
system (see the network architecture depicted in Fig. 1).

Although other solutions exist, the Session Invitation
Protocol (SIP) is currently the preferred standard option for
audio and video conferencing over IP networks. Although
Calling and called parties initially get in touch through an
infrastructure of servers (i.e., SIP proxies, location services,
etc.) they eventually exchange messages to negotiate the
parameters of their media session(s) — such as the audio
codec to be used for a phone call. Pipeline forwarding aware
end-systems can initiate resource reservation procedures
once they have agreed on the characteristics of the media
sessions, thus knowing the profile of the corresponding
traffic and the required QoS. When pipeline forwarding
unaware end-systems are deployed, access nodes can
intercept SIP messages to infer the characteristics and QoS
requirements of media sessions and carry out signaling
procedures on behalf of the end-systems.
Today audio and video conferencing solutions based on a
peer-to-peer overlay to forward media streams, such as
Skype, are gaining significant importance and diffusion as
they are capable of working around firewalls and network
address translation (NAT) functionalities. In general, when a
peer-to-peer overlay is deployed, resource reservation might
follow or accompany the procedures that lead to establishing
peering between nodes. Pipeline forwarding might be
particularly beneficial when the peer-to-peer paradigm is
exploited. In fact, media might travel along a sub-optimal
path through a number of relay nodes. Given the delay
introduced by relay nodes and the non-minimal length of the
path, end-to-end delay becomes an even more critical issue
and deploying pipeline forwarding might be the only viable
solution in certain operating conditions to keep it within
acceptable bounds.

5. REFERENCES
[1] C-S. Li, Y. Ofek, A. Segall, K. Sohraby, “Pseudo-isochronous cell

forwarding,” Computer Networks and ISDN Systems, 30:2359-2372,
1998.

[2] M. Baldi, Y. Ofek, “Fractional Lambda Switching,” Proc. of IEEE
ICC 2002, New York, vol.5, 2692 – 2696.

[3] M. Baldi and Y. Ofek, “End-to-end Delay of Videoconferencing over
Packet Switched Networks,” IEEE/ACM Transactions on Networking,
Vol. 8, No. 4, Aug. 2000, pp. 479-492.

[4] M. Baldi, G. Marchetto, G. Galante, F. Risso, R. Scopigno, F. Stirano,
“Time Driven Priority Router Implementation and First Experiments,”
IEEE ICC 2006, Istanbul (Turkey), June 2006.

[5] D. Agrawal, M. Baldi, M. Corra, G. Fontana, T. T. Huong, G.
Marchetto, V. T. Nguyen, Y. Ofek, D. Severina, O. Zadedyurina,
“Ultra Scalable UTC-based Pipeline Forwarding Switch for Streaming
IP Traffic,” IEEE INFOCOM 2006, Barcelona (Spain), Apr. 2006.

[6] S. Blake et al., “An Architecture for Differentiated Services,” IETF
Std. RFC 2475, Dec. 1998.

[7] R. Braden, D. Clark, S. Shenker, “Integrated Services in the Internet
Architecture: an Overview,” IETF Std. RFC 1663, July 1994.

[8] K. Nichols, V. Jacobson, L. Zhang, “A Two-bit Differentiated Services
Architecture for the Internet,” IETF Std. RFC 2638, July 1999.

[9] Communicating European Research (CER 2005) International
Conference, Brussels, Belgium, Nov. 2005, http://europa.eu.int/comm/
research/conferences/2005/cer2005/index_en.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

