

Abstract — As broadband access becomes more widely

available and affordable, future Internet traffic will be
dominated by streaming media flows, such as video-telephony,
video-conferencing, high definition TV, 3D video, virtual reality,
and many more. Consequently, networks will have to offer
quality of service with scalable solutions — i.e., currently relied-
upon overprovisioning is not likely to be a viable solution to
accommodate streaming media traffic. This paper describes a
testbed and experiments demonstrating the deployment time-
driven priority scheduling — an implementation of pipeline
forwarding — to support video streaming. The purpose of the
presented experiments is to intuitively show the benefits the
proposed solution provides to UDP-based streaming applications,
while preserving efficient support for elastic TCP-based traffic.

Index Terms— Quality of service, UDP-based streaming,
Testbed and experimentation, Efficient utilization of network
resources, Traffic engineering

I. INTRODUCTION
igh speed Internet access has by now become widely
available potentially opening a large market to new

services, that are potential new source of revenue for an ailing
telecom market. Many service providers offer VoIP based
telephony services, video broadcasting, and video on demand.
Such applications are often referred to as multimedia or real-
time as, contrary to traditional data applications, the timing of
packet delivery is important for them to work properly. Packet
networks, traditionally designed and deployed for data
applications are not engineered to tightly control the delay
packet experience in routers where they might contend for
resources (e.g., transmission capacity) and consequently
queued.
Right now the requirements of multimedia applications are
commonly satisfied through overprovisioning, i.e., by keeping
the network lightly loaded so that contention for network
resources is low and queuing time consequently small. This
approach is feasible as only a small fraction of broadband
access subscribers are currently using such multimedia
services and they deploy their Internet connection with
traditional applications, such as web browsing and e-mail.
Consequently, users do not fully deploy the large bandwidth
of their access connections and both access and backbone
networks are currently lightly loaded. Although some users
more heavily exploit their broadband access with peer-to-peer

 The presentation of this work was supported by the European

Commission under the E-Next Project FP6-506869

file sharing applications, these do not require real-time
service. As a consequence, the above overprovisioning
approach can still be applied if coupled with traffic
differentiation, e.g., according to the Differentiated Services
solution [1], to separate and prioritize multimedia traffic.
However, this approach is not any longer feasible if
multimedia traffic grows to become dominant and technology
does not evolve fast enough to enable a proportional
enhancement of the network infrastructure.
Pipeline forwarding [2] is particularly suitable to carry
streaming media applications over the Internet since it offers:

1. Quality of service guarantees (deterministic delay and
jitter, no loss) for (UDP-based) constant bit rate (CBR)
and variable bit rate (VBR) streaming applications — as
needed;

2. Support of elastic, e.g., TCP-based, traffic — i.e.,
existing applications based on “best-effort” services are
not affected in any way;

3. High scalability of network switches (multi-terabit/s in a
single chassis) [3],

This paper reports on the first experiments of video streaming
through a testbed network of routers supporting time-driven
priority (TDP) scheduling [2] that is an implementation of
pipeline forwarding. The aim and contribution of this paper is
to demonstrate in an intuitive and visual way, i.e., through the
user perceived quality of the video stream played at the
receiver, that
• The prototypal router implementation with TDP support

works properly, thus providing the expected quality of
service, and

• Multimedia streaming applications can benefit from it
Notice that although the experiments presented in this work
have been done with one way streaming video, the results and
considerations in this paper apply to interactive media as well,
where the short and constant end-to-end delay observed in the
experiments is even more critical.
Section II focuses on pipeline forwarding, the technology
underlying the presented testbed, by presenting its operating
principles and properties and how it can be deployed in
current packet networks. The testbed on which the presented
experiments are run is detailed in Section III that describes its
architecture and the implementation of its main component, an
IP router implementing TDP scheduling. Section IV describes
the experiments, including their setup and outcome. Lesson
learned and future research directions are discussed in
Section V.

Mario Baldi and Guido Marchetto
Department of Control and Computer Engineering

Politecnico di Torino (Technical University of Torino)

First Video Streaming Experiments
 on a Time Driven Priority Network

H

II. UNDERLYING PRINCIPLES AND TECHNOLOGIES

A. Pipeline Forwarding: Time-Driven Priority
Pipeline forwarding is a known optimal method that is widely
used in computing and manufacturing. The necessary
requirement for pipeline forwarding is having common time
reference (CTR). In the presented prototypal router UTC
(coordinated universal time) is used for CTR, consequently,
the method used in the testbed is called UTC-based pipeline
forwarding. An extensive and detailed description of UTC-
based forwarding is outside the scope of this paper and is
available in [2].
In UTC-based pipeline forwarding all packet switches are
synchronized and utilize a basic time period called time frame
(TF). The TF duration (Tf) may be derived, for example, as a
fraction of the UTC second received from a time-distribution
system such as the global positioning system (GPS) and, in the
near future, Galileo. As shown in Fig. 1, TFs are grouped into
time cycles (TCs) and TCs are further grouped into super
cycles, each super cycle lasts for one UTC second. TFs are
partially or totally reserved for each flow during a resource
reservation phase. The TC provides the periodicity of the
reserved flow. This result in a periodic schedule for IP packets
to be switched and forwarded, which is repeated every TC.

CTR from UTC
(Coordinated

Universal Time)

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 79

Super-cycle 0
with 8k Time-frames

0
beginning
of a UTC second

1
beginning
of a UTC second

fTfTfT
fT fT

1 2 100

Time
Cycle 0

1 2 100

Time
Cycle 1

1 2 100

Time
Cycle 79

Super-cycle m
with 8k Time-frames

fTfTfT
fT fT

Fig. 1. Common time reference structure

The basic pipeline forwarding operation is regulated by two
simple rules: (i) all packets that must be sent in TF t by a node
must be in its output ports' buffers at the end of TF t-1, and (ii)
a packet p transmitted in TF t by a node n must be transmitted
in TF t+dp by node n+1, where dp is an integer constant called
forwarding delay, and TF t and TF t+dp are also referred to as
the forwarding TF of packet p at node n and node n+1,
respectively. The value of the forwarding delay is determined
at resource-reservation time and must be large enough to
satisfy (i). In pipeline forwarding, a synchronous virtual pipe
(SVP) is a predefined schedule for forwarding a pre-allocated
amount of bytes during one or more TFs along a path of
subsequent UTC-based switches
UTC-based forwarding guarantees that reserved real-time
traffic experiences: (i) bounded end-to-end delay, (ii) delay
jitter lower than two TFs, and (iii) no congestion and resulting
losses.
Time-driven priority (TDP) [2] is a synchronous packet
scheduling technique that enables combining UTC-based
pipeline forwarding with conventional routing mechanisms to
achieve the high flexibility together with guaranteed service.
While scheduling of packet transmission is driven by time,
the output port can be selected according to either conentional
IP destination-address-based routing, or multi-protocol label
switching (MPLS), or any other technology of choice.

B. Non-pipelined Traffic
Non-pipelined (i.e., non-scheduled) IP packets — namely
packets that are not part of a SVP (e.g., IP best-effort packets)
— can be transmitted during any unused portion of a TF,
whether it is not reserved or it is reserved but currently
unused. Consequently, links can be fully utilized even if flows
with reserved resources generate fewer packets than expected.
Moreover, any service discipline can be applied to packets
being transmitted in unused TF portions. For example, various
traffic classes could be implemented for non-pipelined packets
in accordance to the Differentiated Services (DiffServ)
model [1]. In summary, pipeline forwarding is a best-of-breed
technology combining the advantages of circuit switching
(i.e., predictable service and guaranteed quality of service)
and packet switching (statistical multiplexing with full link
utilization) that enables a true integrated services network
providing optimal support to both multimedia and elastic
applications.

C. Multimedia System Architecture
Fully benefiting from UTC-based pipeline forwarding requires
providing network nodes and end-systems with a CTR and
implementing network applications in a way that they use it to
maximize the quality of the received service. However, the
Internet is currently based on asynchronous IP packet switches
and hosts. Thus, especially in an initial deployment phase,
UTC-based pipeline forwarding must coexist and interoperate
with current equipment and applications (e.g., IP video-
phones, video-streaming servers and clients, etc.), as depicted
in Fig. 2. The experiments presented in this work reproduce
such scenario: senders generate asynchronous multimedia
traffic then entering a TDP domain. Edge TDP routers are
connected to traditional asynchronous IP nodes through a SVP
(synchronous virtual pipe) interface that polices and shapes
incoming traffic flows. Specifically, asynchronous packets are
stored in a buffer waiting for their previously evaluated
forwarding TF.

TDP
NetworkAsynch

Network
Asynch

Network

UTC from GPS

Variable delay Variable delayConstant delay
Fig. 2. Interoperation between TDP and asynchronous networks

III. TESTBED
The network architecture for the interoperation of TDP and
asynchronous networks presented in the previous sections has
been demonstrated by building the testbed for video
distribution shown in Fig. 3. In particular, we aim at showing
the effectiveness of UTC-based pipeline forwarding by means
of the quality of the service perceived by a viewer of a
streaming video routed though the TDP network along the
path highlighted in Fig. 3. Although current experiments have
been done with one way streaming media, the results and
considerations apply to interactive media as well, where short
and constant end-to-end delays are even more critical

requirements.

A. Architecture and Components
The testbed, which reproduces the network scenario in Fig. 2,
consists of various asynchronous end-systems — implemented
by two personal computers (PCs) and a router tester —
interconnected by a UTC-based pipeline forwarding network
consisting of four TDP routers. The two end systems, 2.4 GHz
Pentium IV personal computers running Linux Fedora Core 3,
implement a distribution system for one-way video based on
the Fenice ver. 1.9 video server software and the Nemesi ver.
0.5.2 video streaming client [4]. A video stream enters the
TDP network through TDP Router 1 and reaches the client
through the other three TDP routers along the path shown in
Fig. 3.

Streaming

Media Source

Streaming
Media Receiver

TDP Router 1 TDP Router 2

TDP Router 3 TDP Router 4

Media Traffic Flow

Router Tester
(background traffic

generator)

(to and from TDP routers)

Fig. 3. Experimental testbed

All network interface cards deployed in the testbed are Intel
PRO/1000 MT Gigabit Ethernet server adapters operating at
100 Mb/s. An Agilent N2X Router Tester is used to generate
the two types of asynchronous flows described below that act
as background traffic.
Delay insensitive flows — possibly modeling traditional
Internet data traffic such as file transfers and e-mail exchanges
— enter the network as non-pipelined traffic and are handled
as best-effort traffic in the TDP network. This type of
background traffic is used to experimentally verify that the
capability to perfectly isolate pipelined traffic from the non-
pipelined one has been properly implemented in TDP routers.
In fact, a large amount of non-pipelined traffic, possibly
overloading the network, is expected not to affect the service
provided to pipelined traffic.
Delay sensitive flows — possibly modeling real-time traffic
such as voice over IP (VoIP), video on demand, and
videoconferencing — are handled as pipelined traffic in the
TDP network. This type of background traffic is used to
demonstrate the ability of pipeline forwarding to guarantee
deterministic quality of service (QoS) also in case most —
potentially 100% — network resources (e.g., transmission
bandwidth) are dedicated to traffic with specific QoS
requirements, e.g., real-time service. This is a significant
improvement over other QoS approaches:
• The DiffServ model [1] assumes that differentiated traffic is

only a small fraction on the network capacity;
• Conventional (asynchronous) techniques for guaranteeing

service performance in packet networks [5], possibly
adopted in the context of the Integrated Services model [6],
do not allow to fully load the network with packet flows
that require short delay and jitter, especially if they are low

rate flows (see [7] for a detailed discussion).

B. TDP Router Implementation
The core of the testbed is the TDP network composed of four
TDP routers. These are based on the routing software of the
FreeBSD 4.8 operating system running on a 2.4 GHz Pentium
IV PCs; the TDP scheduling algorithm is implemented in the
FreeBSD kernel [8].
Generically, a router data plane moves packets from input
ports to output ports through three modules that perform input
processing, forwarding, and output processing, respectively.
The operations performed by each module of a TDP router are
briefly discussed in the following (see [8] for details).
The input module of an interface connected to another TDP
router determines the forwarding TF of each pipelined packet
by adding the forwarding delay to the estimated forwarding
TF at the previous node. The current router implementation
leverages on the DS field [1] of the IP header to
• Distinguish pipelined packets from non-pipelined packets
• Ensure that the estimate of the forwarding TF is correct

even in case multiple packets are lost (see Section III.B
of [8] for protocol details).

The forwarding module processes packets according to the
specific network technology; the presented prototype performs
conventional IP routing and forwarding.
Consequently, TDP support concerns mainly the output
module where a per-TF, per-output queuing system is needed
to store packets while waiting for their forwarding TF to
begin. The queue in which each packet ends up is determined
by both the input module — deciding the forwarding TF —
and the forwarding module — determining the output
interface. The output module also responsible for the timely
transmission of all the packets stored in the queues
corresponding to a TF when it begins and before it ends.
The input module of SVP interfaces (i.e., interfaces of a
boundary TDP router not connected to a pipeline forwarding
node) includes mechanisms to
• Classify each incoming packet to identify the data flow it

belongs to
• Determine, based on the flow’s resource reservation, the TF

in which the packet should be forwarded by the output
module (i.e., its forwarding TF).

UTC is provided to our prototypal router by a Symmetricom
GPS receiver PCI card that can generate interrupts at a
programmable rate ranging between less than 1 Hz (1PPS —
pulse per second) and 250 kHz (every 4 μs). Such interrupts
are used to pace the beginning of TFs; whenever an interrupt
occurs the values of the current TF and TC are updated.
The current version of the prototype does not implement
signaling functions, i.e., TFs and TCs are statically allocated
to flows through manual configuration.

IV. EXPERIMENTS

A. Basic System Parameters
The current router implementation does not support

preemptive priority, i.e., the capability of interrupting the
transmission of a non-pipelined packet in a non-disruptive

way when a new TF begins (see Section 2.2 of [2] for details).
Consequently, if a portion of a TF is not used by pipelined
traffic and a non-pipelined packet does not fully fit in it, the
current implementation leaves the link idle, thus lowering link
utilization. As this would not happen in a full-fledged
implementation with support for preemptive priority, system
parameters are chosen to avoid the above situation: packet size
is chosen such that the transmission of an integer number of
packets lasts (basically) a whole TF. Having set the TF
duration to 250 μs, 25,000 bits (i.e., about 3 KB) can be
transmitted during one TF and 1 KB packets are deployed..

B. Resource Reservation
The needed amount of bandwidth should be reserved in proper
portions of TFs for the reference real-time flow depicted in
Fig. 3, a 10 Mb/s MPEG video stream. As the deployed video
server generates 1 KB packets, capacity for at most three
video packets could be reserved during each TF. Since the
video stream results from encoding 25 video frames per
second, the average frame size is about 49 KB. However, an
MPEG codec produces a significantly different amount of bits
for a frame depending on which of the following encoding it
is using1.
Intra-frame Coding eliminates spatial redundancy inside
pictures and the resulting encoded picture is called I-frame.
Predictive Coding eliminates temporal redundancy between a
picture and the previous one through motion estimation. The
obtained encoded picture is called P-frame and it is typically
from 2 to 4 times smaller than an I-frame.

t

I-frame I-frame I-frame

P-frames P-frames P-frames

Fig. 4. MPEG video stream

Normally codecs apply intra-frame coding and predictive
coding on different frames according to a fixed, re-occurring
pattern, as depicted in Fig. 4. However, I-frame and P-frame
size is generally unpredictable. Moreover, some codecs can
use intra-frame coding and predictive coding on different
portions (macroblocks) of the same frame. This results in a
packet flow with a very variable bit rate.
Having configured the TC to be composed of 160 TFs, one
video frame is transmitted every TC. A network analyzer was
used to observe the traffic corresponding to the video stream
deployed in our experiments in order to determine how much
transmission capacity to reserve during each TC. The
maximum size of a video frame, i.e., the maximum burst size,
resulted to be about 100 KB. In order to minimize end-to-end
delay while avoid packet loss (i.e., in order to ensure that a
whole frame can be transferred during a single TC) the
capability of transmitting 100 KB (i.e., 100 packets) each TC
must be ensured. For example, capacity for transmitting 3
packets could be booked during 34 TFs. This results in
bandwidth overallocation (about 20 Mb/s for a 10 Mb/s flow)

1 Actually, a third type of encoding, called bi-directional predictive coding

exists; without loss of generality, it was not considered in this work.

and low efficiency in the utilization of network resources.
However, such issue is beyond the scope of the current
experiments that primarily aim at verifying the correct
operation of the system. Section V discusses ways to improve
utilization of reserved resources, which is key in engineering a
scalable solution.
In order to limit the variation of the delay introduced by the
SVP interface on video packets, the TFs in which resources
are allocated should be as evenly distributed as possible across
the TC. Issues related to minimizing the jitter due to the SVP
interface are outside the scope of this work.

C. Background Traffic Pattern
Delay sensitive background traffic is generated by the router
tester as a set of CBR flows with destination and bit rate
chosen to maximize TF utilization and contention on the links
traversed by the streaming video. Such links can host up to
78.75 Mb/s of additional pipelined traffic to be transmitted
during the 126 TFs not reserved to the video stream.
A possible solution to have delay sensitive background traffic
fully load the links traversed by the streaming video flow is to
define ten 7.875 Mb/s CBR flows that follow the same path.
However, such a traffic pattern does not maximize resource
contention, which potentially causes long queuing delays. In
fact, after packets from the video stream and other delay
sensitive flows have contended for transmission on the link
between TDP router 1 and TDP router 2 in Fig. 3, they can
stream through the subsequent links in the same order without
further contention, hence without being possibly queued. This
obviously results in limited delay and jitter even if no
particular QoS oriented scheduling mechanisms, whether TDP
or conventional ones, are deployed in output modules.
Consequently, the experiment would have little significance2.

TDP Router 2

to and from
Router 1

to and from
Router Tester

to and from
Router 4

to and from
Router 3

Streaming Video Flow

Five background flows

TDP Router 2

to and from
Router 1

to and from
Router Tester

to and from
Router 4

to and from
Router 3

Streaming Video Flow

Five background flows

Fig. 5. Link contentions on TDP Router 2

A more complex traffic scenario is therefore used in the
presented experiments. Thirty 7.875 Mb/s flows enter the TDP
network from the various TDP routers and follow paths
defined in such a way the reference video flow competes with
other ten delay sensitive flows at each hop, as shown in Fig. 5
for TDP router 2. The dotted line represents the video stream,
while each of the continuous lines represents a group of five
delay sensitive background flows. The ten background flows
sharing an output link with the video stream arrive from
different input links and consequently actually contend for the

2 Notice that as far as TDP is concerned, its principles of operation are such

that contention is avoided in any case. Realizing a scenario in which
contention naturally occurs is essential in order to (i) verify proper operation
of the TDP implementation and (ii) demonstrate TDP theoretical properties.

transmission capacity as their packet arrival processes are, in
general, independent. Once they reach TDP router 3, the 2
groups of five background flows follow different paths, thus
contending again with the streaming video but for different
links.
According to the described traffic scenario, the total amount
of bandwidth reserved on the links traversed by the video
stream is 99.15 Mb/s (out of 100 Mb/s). Unused bandwidth,
i.e., parts of TFs, are deployed for transmitting delay
insensitive background traffic that is provided with a best-
effort service, i.e., queued in a queue served by a FIFO (first
in first out) scheduler. Delay insensitive background flows
follow similar routes as delay sensitive ones in order to
maximize contention for them as well. As several 10 Mb/s
flows are generated, links are overloaded and a significant
amount of packets is discarded.

D. Jitter Control and Compensation
Replay buffers are commonly implemented in media
streaming clients to absorb the jitter experienced by packets
across the network. Since the network topology in the
presented testbed is very simple (hence routers have few
interfaces), even with QoS unaware packet scheduling
algorithms, such as FIFO, jitter does not grow very large in
spite of the complex traffic patterns defined for maximizing
resource contention. Although replay buffers with typical
sizes would certainly suffice to absorb the jitter accumulated
in the presented testbed, this is not the case in general.
On the other hand, the jitter on a TDP network is very low and
independent of the path (i.e., number of nodes) and traffic. In
order to offer a user perceivable demonstration of the
effectiveness of TDP in limiting jitter, the replay buffer size is
minimized. Specifically, in our experiments the replay buffer
is set to 1,096 bytes — which is the minimum size allowed by
the deployed client software. As 1 KB packets are generated
by the video server, the content of each packet is decoded
immediately as the corresponding packet is received, without
waiting for the replay buffer to fill up in order to compensate
possibly late packets.

E. Results
In all the experiments run in the described scenario the video
stream is replayed at the receiver with optimal user perceived
quality and unnoticeable delay. As no visible losses occur,
neither router output buffers nor video client replay buffer
overflow, i.e., TDP scheduling actually limits packet jitter as
expected.
This result is especially significant considering that about 89%
of the network capacity is on average used by delay sensitive
traffic — each 100 Mb/s link traversed by the 10 Mb/s video
stream carries an additional 79 Mb/s of delay sensitive
background traffic. This result is quite far from what could be
achieved with a DiffServ approach [1] that heavily relies on
the assumption that differentiated (e.g., delay sensitive) traffic
is only a small fraction of the network capacity. Also
conventional (asynchronous) QoS techniques [5], possibly
adopted in the context of the Integrated Services model [6],
hardly enable delay sensitive traffic to account for 89% of the
link capacity, while guaranteeing short delay and jitter. This is

especially hard if delay sensitive traffic is composed of low
rate flows [7]; although the experiments presented here are
related to a high rate video stream, the achieved results are
independent of the flow rate, as it can be easily inferred from
the simple TDP operating principles [2]. Finally, TDP is a
very simple and scalable scheduling discipline, while
conventional QoS techniques with best properties (e.g., WFQ)
feature high implementation complexity and suffer from
limited scalability (i.e., applicability in large scale, significant
scenarios).
Measurements taken in experiments run on a similar network
topology demonstrated TDP properties in terms of limited
jitter and expected delay, independently of the number of
hops, also when links where fully loaded (not “just” 90%) by
(synthetic) delay sensitive traffic [8].

V. DISCUSSION AND IMPROVEMENTS
As previously mentioned, in the presented experiments the
network could not be fully loaded because, because a large
amount of bandwidth is allocated to the video stream as a
simple way of coping with the unpredictability of its rate.
Specifically, enough capacity is allocated during each TC to
transmit a maximum size video frame. This results in
allocating twice the average video stream rate; an even larger
ratio of allocation over average rate could result for video
streams that have few very detailed and/or very fast scenes
that result in few frames much larger than all the others. This
approach was used only as a “quick fix” to enable us to obtain
first results that visually demonstrate both proper operation of
the testbed and TDP properties. However, the approach goes
against the very principles that motivated this work as it
results in low utilization of reserved resources, i.e., low
reservation efficiency as it is called in the context of this
paper. The following subsections discuss various ways to
maximize reservation efficiency. Although they are not
implemented in the current testbed, some of them are the
object of ongoing work.

A. Limited allocation without losses and large delay
Capacity is booked in each TC so that the allocated rate is
larger than the video stream rate (although smaller than the
reservation deployed in the presented experiments). When the
amount of packets generated by the video server for a video
frame is larger than the capacity booked during a TC, the
exceeding packets can be transmitted by the SVP interface in
the following TC (or TCs). Consequently, packets are
buffered in the SVP interface for a time, possibly spanning
multiple TCs (i.e, video frame periods), that depends on the
burstiness of the video stream and the reservation. Moreover,
as the delay experienced at the SVP interface by the packets
of the video stream is highly variable, a correspondingly large
replay buffer is required at the client.
A larger capacity allocation reduces the delay (and jitter)
experienced by packets and buffering requirements at the SVP
interface, but lowers reservation efficiency. In general, this
solution is not suitable for interactive applications, such as
telephony and videocoferencing, but could be applied for one
way streaming media possibly featuring a low bit rate (in

order to limit buffer requirements at the SVP interface).

B. Limited allocation with possible loss and limited delay
Delay could be reduced by relaxing the requirements on loss,
i.e., by allowing the possibility that a certain percentage of
packets be lost. In particular, the size of the queue for the
video stream at the SVP interface is limited and possibly
overflowing packets are either discarded or forwarded in the
network as non-pipelined traffic. Obviously, the quality of the
video played at the client will be degraded depending on the
allocated capacity in each TC, the burstiness of the video
stream, the size of the queue at the SVP interface, and the
network load.
The user perceived quality can be improved, while keeping
the same delay bound (i.e., queue size and allocation), by
• Handling non-pipelined traffic according to the DiffServ

model;
• Taking into account the perceptive importance of the video

packets when deciding which ones to forward in the
network using TDP and which ones to handle as non-
pipelined traffic.

The latter approach, which we consider very promising, needs
to be defined in detail, thoroughly studied, and validated,
which is the object of ongoing work.

C. Optimal allocation without losses and optimal delay
As argued in [9], an optimal solution for the transmission of
(interactive) media is obtained by synchronizing to UTC the
video server (or video codec in case of real-time video). In
fact, in this case the allocation can be minimized while
optimizing the delay introduced by the network and applying
UTC-based forwarding to all video packets. In particular, a
different amount of capacity can be allocated in different TCs
following the pattern of I-frames and P-frames. For example,
with reference to the sample video stream depicted in Fig. 4
and given a super-cycle of 25 TCs (as it is in our
experiments):
• The capacity needed to send the amount of bytes encoding

an I-frame is allocated during TCs 0, 5, 10, 15, and 20. In
order to minimize end-to-end delay, the allocation should be
done during subsequent TFs.

• The capacity required to send the amount of bytes encoding
a P-frame is allocated during the remaining TCs. In order to
minimize end-to-end delay, the allocation should be done
during the first TFs allocated in TCs 0, 5, 10, 15, and 20.

In order to minimize end-to-end delay, the video server should
be programmed to (encode a frame and) generate the packets
corresponding to a frame during the TFs reserved to the video
stream. Additionally in case of real-time video, the codec
should be programmed to finish encoding each video frame
right before the set of allocated TFs.
However, as pointed out before, the size of I-frames, as well
as P-frames, is not constant. This can be handled in one of the
following ways:
• A reservation larger than the average stream rate is

performed by allocating the size of the largest frame for
both I-frame and P-frame reservation. Reservation
efficiency might still be quite high compared to the solution
described in Section IV.B because the size difference

between I-frames, as well as P-frames, is typically smaller
than the one between I-frames and P-frames. However, this
solution might be impractical because, especially in real-
time (e.g., interactive) video applications, the maximum size
of encoded frames cannot be known at resource reservation
time.

• Allocation is performed based on the, possibly estimated,
average frame size and packets exceeding the reservation
are either discarded or forwarded in the network as non-
pipelined traffic. The resulting quality degradation can be
controlled by

• deploying the DiffServ model for non-pipelined traffic,
• taking into account the perceptive importance of the

video packets when deciding which ones to forward in
the network as non-pipelined traffic

• dynamically adjusting the resource reservation based
on the actual size of encoded frames, i.e., the
characteristics of the video scenes.

• In case of real-time video, the codec is modified to take into
account the resource reservation and generate an amount of
bytes for each encoded video frame as close as possible to
the corresponding reservation [9], while maximizing the
user perceived quality. In addition, in order to optimize the
perceived quality the resource reservation could be adjusted
based on the feedback from the codec on the characteristics
of the video scenes.

All the approaches presented in this section are considered
very promising as long term solutions (as they require UTC-
aware end systems and applications) and will be subject of our
future research.

ACKNOWLEDGMENT
The authors wish to thank Flavio Bonatesta for setting up

the testbed to run the presented experiment.

REFERENCES
[1] S. Blake et al., An Architecture for Differentiated Services, IETF Std.

RFC 2475, Dec. 1998.
[2] C.-S. Li, Y. Ofek, and M. Yung, Time-driven priority flow control for

real-time heterogeneous internetworking, in Proc. IEEE (INFOCOM’
96), vol. 1, (Mar. 24–28, 1996), 189–197.

[3] M. Baldi, Y. Ofek, “Multi-Terabit/s IP Switching with Guaranteed
Service for Streaming Traffic,” IEEE INFOCOM 2006 High-Speed
Networking Workshop, Barcelona (Spain), Apr. 2006.

[4] (LS)³ - Libre Streaming, Libre Software, Libre Standards. An open
multimedia streaming project, “(LS)³ Tools,” [Online] Available at:
http://streaming.polito.it/tools

[5] H. Zhang, “Service Disciplines for Guaranteed Performance Service in
Packet-Switching Networks,” Proceedings of the IEEE, Vol. 83, No. 10,
Oct. 1995.

[6] R. Braden, D. Clark, S. Shenker, “Integrated Services in the Internet
Architecture: an Overview,” IETF Std. RFC 1663, July 1994.

[7] M. Baldi, F. Risso, "Efficiency of Packet Voice with Deterministic
Delay," IEEE Communications Magazine, Vol. 38, No. 5, May 2000, pp.
170-177.

[8] M. Baldi, G. Marchetto, G. Galante, F. Risso, R. Scopigno, F. Stirano,
"Time Driven Priority Router Implementation and First Experiments,"
IEEE International Conference on Communications (ICC 2006),
Symposium on Communications QoS, Reliability and Performance
Modeling, Istanbul (Turkey), June 2006.

[9] M. Baldi and Y. Ofek, “End-to-end Delay of Videoconferencing over
Packet Switched Networks,” IEEE/ACM Transactions on Networking,
Vol. 8, No. 4, Aug. 2000, pp. 479-492.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

