
Time-Driven Early Discard (TED) to Improve the
Fairness of TCP Congestion Control

Mario Baldi and Andrea Vesco
Dipartimento di Automatica e Informatica — Politecnico di Torino

Corso Duca degli Abruzzi, 24 - 10129 Torino (Italy)
{mario.baldi,andrea.vesco}@polito.it

Abstract— This paper proposes a novel adaptive AQM
(advanced queue management) approach called Time-Driven Early
Discard (TED). The basic underlying idea is to set a deadline on
packet service time in routers, beyond which packets are discarded.
TED is shown to improve fairness among TCP connections sharing
congested links when the deadline is chosen proportional to their
round trip time (RTT). TED is adaptive in limiting the throughput
of only those connections that traverse congested links. In fact, as
demonstrated by the presented results, TCP connections traversing
parts of the network with enough available capacity can achieve the
maximum throughput enabled by their transmission window as
corresponding packets do not reach their deadline . Finally, the
paper shows how TED can be instrumental in enabling TCP to
deploy shorter retransmission timeouts, which results in prompter
reactivity to loss, hence improved performance overall in terms of
achieved goodput.

I. INTRODUCTION
Internet traffic is currently dominated by TCP connections

carrying data generated by applications such as the web, file
transfers, or peer-to-peer file sharing. A distinctive feature of
TCP-based applications is their elastic nature as they can
operate at a wide range of rates depending on availability of
network resources. TCP sources increase the sending rate up
to the capacity of their access link to match the maximum
throughput available from the network path. Since available
bandwidth changes over time, TCP uses a window-based,
congestion control algorithm that increases and decreases the
sending rate in order to match these variations.

The TCP window limits the maximum number of
outstanding — transmitted and not yet acknowledged — bytes
and slides over a segment of transmitted data once their
reception acknowledgement is received. In addition, the
window size, hence the sending rate, is increased if packets are
correctly delivered and decreased if packets are lost according
to the well known, widely studied additive increase and
multiplicative decrease (AIMD) algorithm.

A round trip time (RTT) separates events (e.g.,
transmission of a packet) from their respective effect on the
window (i.e., sliding or size changing), which takes place once
the corresponding acknowledgement is (not) received.
Consequently, throughput achieved by TCP is inversely
proportional to the RTT, hence the well known fairness
problem of TCP as connections with short RTT achieve higher
throughput than connections with longer RTT when they share

a congested link. To be more specific, TCP unfairness has two
causes:
1. Flow control: a window limits the amount of outstanding

data, which is outstanding for at least a RTT;
2. Congestion control: TCP senders identify congestion (as a

consequence of packet loss) and react to it within a time
proportional to their RTT.

The solution proposed in this work focuses on congestion
control to mitigate the fairness problem and improve goodput
by penalizing TCP connections with a shorter RTT in case of
congestion and decreasing the time for reacting when
congestion is identified, respectively.

It is widely accepted that flow control and congestion
control mechanisms, albeit critical, are essential for packet
networks — specifically the Internet — to function in a stable
way. Consequently, a significant amount of work has been
devoted to the design, performance evaluation, and
optimization of flow control and congestion control algorithms,
among which the ones of TCP. Being an end-to-end
mechanism, TCP infers network congestion from clues it
gathers from events, such as a missing packet. Significant
research has been devoted to giving routers an active role in
congestion control. According to the well known RED
(Random Early Detection) algorithm [2] routers monitor the
average occupancy of their buffers and when it grows beyond a
given threshold they “notify” selected TCP sources by
dropping their outstanding packets.

Due to the multiplicative decrease algorithm, packet loss
can lead to a potentially significant degradation of network
performance in terms of overall amount of information
successfully transferred by TCP-based applications. Explicit
Congestion Notification (ECN) was proposed as a way of
notifying TCP sources without dropping packets. Routers use
two bits in the DiffServ Field of the IP header to mark packets
of selected connections when the network is congested. The
TCP sender receiving a notification reacts accordingly without
triggering actions typically performed in reaction to a packet
loss. Specific packet marking and window updating algorithms
are required in network nodes and TCP senders, respectively,
to benefit from ECN in fairness control [3]. For example FRED
(Fair Random Early Detection) [4] uses per-flow information
and core-stateless fair queuing (CSFQ) [5] in network nodes
that operate differently at the network edge and in the core.

Along these lines, this paper presents and assesses a
possible solution to improve fairness among TCP connections

with different RTT based on a novel advanced queue
management (AQM) algorithm called Time-driven Early
Discard (TED). Network nodes drop packets, possibly even
when their buffers are not yet completely full, based on the
time a packet has spent in the network. A different discard
deadline can be set for each TCP connection sharing a link.
The AQM algorithm aims at ensuring that the TCP connections
fairly share the link bandwidth without keeping any per-flow
information inside network nodes.

Section II introduces the basic operating principles of TED
and some possible TED-based approaches to improve fairness
among different TCP connections and analytically devises the
maximum queue size with TED is devised analytically. In
order to assess the proposed approach to TCP fairness
improvement simulations were run with NS2. Section III
describes the simulation scenario and results obtained using
both conventional TCP Reno sources and TCP senders with
improved loss recovery and RTT estimation. Section IV draws
some conclusions and delineates possible future work.

II. TIME-DRIVEN EARLY DISCARD
This paper presents a solution that aims at controlling TCP

sources to ensure fairness while maximizing aggregate
throughput. Time-driven early discard (TED), a novel AQM, is
at the core of such solution: a deadline is set on packet service
time and a packet is dropped if it is not forwarded before its
deadline. In the context of this work output queues with a first-
in-first-out (FIFO) scheduling discipline are deployed.
However, TED is independent from the specific scheduling
technique.

A. Operating Principles
The general, basic idea for ensuring fairness is to set the

deadline (i.e., upper bound on packet service time) proportional
to the RTT of TCP connections. Given that a shorter deadline
will result in more losses, this should compensate the natural
disadvantage of TCP connections with long RTT, thus enabling
competing flows to fairly share available bandwidth.

The deadline D , can be set on a per-queue basis — Locally
Bounded Delay (LBD) — or globally on the whole path —
End to End Bounded Delay (EBD). The deadline, whether
local or global, can be the same for all packets or set on a per-
flow basis. In the latter case the deadline can be associated to
packets, e.g., stored in their header in order to avoid nodes to
handle per-flow information. As the goal of this paper is to
present the basic idea of deploying TED to enforce fairness and
assess it, implementation related issues and trade-offs are not
addressed here and are left as future work.

EBD requires each packet to include either the time already
spent inside the network or the time remaining before the
deadline expiration1. Each node, before forwarding a packet,
updates this information based on the time spent in the node.
Packets are dropped by the first node finding an expired
deadline.

1 Specification of additional information and details on its inclusion in packet
headers (i.e., field format, protocol level) are beyond the scope of paper.

TED guarantees that, if delivered, packets will reach their
destination within a maximum service time maxS that is
obtained by adding:
1. The propagation time on the links of the path
2. The processing and switching time of the traversed routers
3. The deadline, i.e., overall maximum amount of time that

the packet can wait in the queues on the path.
Assuming that the first two addends are constant2, they provide
the minimum service time minS , i.e., the time a packet takes to
travel across the network when queues are empty.

The total service time with EBD is:

EBDDSS += minmax
The LBD deadline limits the time a packet can spend in

each node on the path from source to destination. Each node
when receiving a packet time stamps it with its time of arrival;
if the packet cannot be forwarded within the deadline, it is
discarded. Being the deadline a local queue parameter, per-
packet LBD does not require any information to be included
into packet headers and the resulting total service time is:

LBDDKSS ⋅+= minmax
where K is the number of nodes on the path from source to
destination.

It is worth noting that although network nodes deploy time
information in order to implement TED, no synchronization
among them is required. Specifically
• Given that only local time is deployed, the value of the time-

of-day does not need to be the same on different nodes,
• Given the deadline values practically deployed (see

Section III for examples)
the accuracy of oscillators installed on commercial routers
suffices and no frequency synchronization is required.

B. Queue Size
The size of a queue operating TED does not diverge; the

upper bound on the number of packets in the queue maxQ
devised below. Let
• K be the number of input links of a node,
• iC the capacity of link i,
• maxD the maximum TED deadline, whether local or global,

associated to a packet.
The worst case as far as accumulation of packets in a buffer is
when:
1. All flows entering the node from its input interfaces must

be forwarded through the same output port j,
2. Port j is temporary unavailable (e.g., because it is

transmitting packets from a higher priority queue), and
3. Each arriving packet can spend in the queue of port j the

maximum deadline maxD .
The total amount of bits entering the buffer from input link i
before the deadline of the first received packet expires and it is

2 Although the processing and switching times are not constant, it is
reasonable not to consider their variation in this context as in all practical
cases it is negligible compared to propagation delay (on a global scale
network), queuing delay, and queuing delay variation.

eliminated from the buffer is iCD ⋅max . Consequently, the total
amount of bits possibly accumulated in the queue of output
port j is:

∑
≠<<

⋅=
jiki
ij CDQ

,1
maxmax,

If all the J links of the node have the same capacity C

CDJQ ⋅⋅−= maxmax)1(
TABLE I shows maximum size reached by a TED queue

on a router with 10 Gb/s interfaces for various port counts
(rows) and maximum deadline values (columns). Most high-
end routing products currently available on the market — the
so-called terabit routers — feature buffers between 100 MB
and 1 GB on 10 Gb/s interfaces. Consequently, if TED AQM
were activated on such routers in most of their hardware
configurations no packet would be dropped due to buffer
overflow, i.e., packets would be lost only when their deadline
expires. Moreover, adopting TED would enable reducing the
amount of memory in routers without compromising network
utilization and TCP performance.

TABLE I
MAXIMUM SIZE [MBYTE] OF QUEUES OPERATED WITH TED ON A

ROUTER WITH 10 GB/S INTERFACES
Interfaces Deadline

(µs) 10 20 30 40 50
125 1,41 2,97 4,53 6,09 7,66
500 5,63 11,88 18,13 24,38 30,63
1000 11,25 23,75 36,25 48,75 61,25
2000 22,50 47,50 72,50 97,50 122,50
4000 45 95 145 195 245

TED operation is not compromised if a queue is smaller
than maxQ . However, packet losses due to overflow could affect
the effectiveness of the presented approach to improve fairness
of TCP congestion control. In fact, such losses do not follow
the rationale of TED with deadlines set as discussed above and
trigger a reaction from possibly “wrong” TCP connections. In
this first work on TED the effects of buffer overflow are not
considered and consequently the above equations are devised
to calculate the size maxQ of each buffer. Future work will be
devoted to the issues of buffer overflow and possibly to
developing a TED variant in which when a queue reaches its
maximum capacity packets are discarded based on their
deadline and the time they have already spent in the network.

III. SIMULATION RESULTS
Simulations were run to compare TED AQM and the

DropTail queue management policy in terms of goodput and
fairness in a typical high network load scenario. Simulations
results not reported in the paper show that (i) in the given
scenario (i.e., a number of TCP connections sharing a single
bottleneck link, as it is likely to happen in real-life scenarios)
and (ii) for the objective addressed by this work (i.e.,
improving the fairness of TCP congestion control) EBD-TED
and LBD-TED provide practically identical outcomes and lead
to the same conclusions. Consequently, although the presented
simulation results were devised with EBD-TED this section
generically refers to TED as the observations made and
conclusions drawn equally apply to LBD-TED.

Figure 1 Network Topology

Figure 1 shows the network topology used for the
simulations where TCP connections with different RTT are
routed through a bottleneck link, i.e., link C with capacity
300 Mb/s. The overload condition of the bottleneck link was
assessed in advance with a TCP throughput model [6] that
provides the throughput of each TCP connection as a function
of loss rate and round trip time. The starting time of TCP
connections — modeled as having an unlimited amount of data
to send — is calculated randomly and the total simulation time
is 120 sec.

TABLE II
DEADLINE VALUES DEPLOYED IN THE SIMULATIONS

Deadlines (µs) Simulations 4ms 7ms 12ms 16ms
S1 120 500 625 1000
S2 120 550 600 900
S3 120 650 750 900

The deadlines to be used with TED AQM were set
according to the RTT of TCP connections. Specifically, the 12
TCP flows have one of four RTTs: 4 ms, 7 ms, 12 ms, and
16 ms. A different deadline was associated to each RTT and
chosen with the aim of limiting the throughput of connections
with short RTT. In case of congestion, this enables TCP
connections with longer RTT to grab a fairer share of the
bottleneck link bandwidth. As shown in TABLE II the
simulations were run with three sets of deadlines.

The buffer associated to each link j has size jQmax, as
derived in Section II.B to avoid packet loss due to buffer
overflow, i.e., in order to isolate the effects of TED and
measure their impact on TCP performance. Simulations with
the DropTail queue management policy using infinite buffers
were run in order to devise an (ideal) TCP goodput to be used
as a baseline for the comparison.

The graphs shown in this section (e.g., Figure 2 and Figure
3) plot the goodput of TCP connections normalized to their
optimal — in terms of fairness — goodput iO over the
bottleneck link. The TCP connections in the figures are sorted
in decreasing RTT order. The optimal goodput of a TCP
connection is calculated as follow:

Let active connections traversing the bottleneck be sorted
by RTT so that ij RTTRTT ≥ for all ji > , with 10 −≤≤ Ni
and 10 −≤≤ Nj ,

−⋅=

0
0 ,1min

RTT
W

p
h

N
CO o

o

ob

10,

1

min

1

0 −≤<

−

−

−⋅

=
∑

−

= Ni
RTT
W

iN

O
p
hC

O
i

i

i

j
j

i

i
b

i

where bC is the capacity of the bottleneck link, N is the
number of active connections, ip and ih are the mean packet
length and the packet header length, respectively, iRTT is the
round trip time and iW is the dimension of the maximum
transmission window in bits for TCP connection i. Basically,
the optimal goodput is either the maximum goodput allowed by
the transmission window, or a fair share of the link bandwidth,
whichever is the minimum. In the simulation scenario
presented in Figure 1 the goodput of all TCP connections
traversing the bottleneck link is not limited by the transmission
window, i.e., iNCO bi ∀= , .

The reminder of this section presents two sets of simulation
results; the first set of simulations (Section III.A) deploys
common TCP sources, while in the second set (Section III.B)
the TCP loss recovery algorithm was modified in order to take
advantage of the specificity of a network in which TED is
being deployed.

A. TCP Reno
As it is graphically shown in Figure 2, the TCP congestion

control algorithm divides the capacity of a fully loaded (i.e.,
bottleneck) link among active TCP connections in inverse
proportion to their RTT. Consequently, unfairness among
active connections arises. On the other hand, as shown in
Figure 3, deployment of TED AQM with properly chosen
deadlines results in long TCP connections (C1, C2, C3, and
C4) enhancing their goodput and short ones (C8, C9, and C10)
decreasing it.

Fairness can be more quantitatively assessed using the well
known Jain’s Fairness Index:

∑∑
==

⋅

=

N

i
i

N

i
i GNGf

1

2
2

1

where N is the number of active connections and iG is the
normalized goodput of thi TCP connection. This fairness index
ranges from 0 to 1, with 1=f representing optimal fairness.

As shown in TABLE III, TED with the deadlines set in
simulation S3 yields a 15% and 24% fairness improvement
respectively over DropTail queue management with infinite
and finite (i.e., of size jQmax, for each output interface j
calculated as discussed in Section II.B for the chosen
deadlines) buffers, respectively.

Figure 4 plots the goodput of TCP connections not
traversing the bottleneck link C (i.e., C7, C11, and C12) in all
simulation scenarios.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

C1 C2 C3 C4 C5 C6 C8 C9 C10

AVERAGE
GOODPUT

N
or

m
al

iz
ed

 G
oo

dP
ut

DropTail Infinite DropTail Finite

Figure 2 Normalized goodput of each TCP connection traversing the

bottleneck and their average with DropTail queue management.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

C1 C2 C3 C4 C5 C6 C8 C9 C10

AVERAGE
GOODPUT

N
or

m
al

iz
ed

 G
oo

dP
ut

S1 TED S2 TED S3 TED

Figure 3 Normalized goodput of each TCP connection traversing the

bottleneck link and their average with TED AQM.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

C7 C11 C12

N
or

m
al

iz
ed

 G
oo

dP
ut

DropTail Infinite S1 TED S2 TED S3 TED

Figure 4 Normalized goodput of TCP connections not traversing bottleneck.

TABLE III
FAIRNESS INDEX PER SIMULATION

Simulations Jain’s Fairness Index
DropTail (Finite buffers) 0,759
DropTail (Infinite buffers) 0,84
S1 0,963
S2 0,985
S3 0,991

TED does not affect the performance of TCP connections
when bandwidth is not limited: no significant difference can be
observed when comparing the goodput TCP connections
achieve when TED AQM and then DropTail3 queue
management are deployed. This results from TED being
adaptive, i.e., affecting network operation only when
congestion kicks in. Specifically, although in the considered

3 Since the links traversed by the TCP connections being considered are not
congested, there is no loss with the buffer size chosen for the simulation,
hence the same goodput was measured in both DropTail simulation scenarios.

scenarios the same deadline is set for all TCP connections with
the same RTT, packets flowing through parts of the network
with enough available capacity (links A, B and D) do not reach
their deadline and the corresponding TCP connections (i.e., C7,
C11, and C12) achieve the maximum throughput allowed by
their transmission window. Instead, packets of connections
traversing the bottleneck link spend more time in its buffer,
their deadline possibly expires, and the corresponding TCP
senders reduce their sending rate.

A comparison of the average goodput plotted in Figure 2
and Figure 3 shows a decrease when TED AQM is deployed
with respect to DropTail queue management with infinite
buffers. However, in authors’ opinion this is not a major
drawback for the following reasons:
• A trade-off between fairness and goodput is common to

most approaches to improve fairness (see for example [8]).
• In the presented network scenarios a 5% network goodput

decrease is traded for a 15% fairness improvement
• The average goodput achieved with TED is higher than with

DropTail queue managements with the same buffer
dimension (i.e., jQmax, for each output interface j as devised
in Section II.B).

To conclude, it is important mentioning that TCP source
synchronization phenomena could not be observed in the traces
of any presented simulation.

B. Improved Loss Recovery
In its basic principle of operation TED controls TCP

connections by dropping packets in the network, which could
lead to a potentially significant degradation of network
performance in terms of overall amount of information
successfully transferred by TCP-based applications. Although
the presented simulation results show that goodput decrease
with TED AQM is not significant, this negative side effect
could be further limited by modifying the TCP loss recovery
algorithm in order to achieve higher goodput notwithstanding
packet loss. In the context of TED this is particularly
important for connections with shorter round trip time that are
given a shorter deadline.

TED operation is simpler and more effective when packets
of the same flow follow the same route. This is not strictly
required, but it anyway happens in the not uncommon cases of
stable routing and label switched path (LSP) provisioning over
MPLS clouds. Under such circumstances a TCP receiver does
not experience out of order arrivals, making it possible to
discover a packet loss at time of arrival of the first duplicated
acknowledgment. Consequently, in the context of this work the
TCP Reno behavior was modified so that the first duplicated
acknowledgment triggers the fast retransmit algorithm, thus
improving reactivity to packet loss, hence goodput. In the
following, simulation results are presented for TCP
connections with modified loss recovery with TED AQM
(TED 1 ACK), where buffer dimension is jQmax, and deadlines
of simulation scenario S3 are deployed.

Simulation results devised for TCP connections with
modified loss recovery and DropTail queue management (not
reported here) are for all practical purposes identical to the

ones devised with conventional TCP Reno and previously
presented. This is due to the fact that in the given network
scenario, as discussed in [6], retransmissions are triggered by
the expiration of the retransmission time-out (RTO). In
particular, since TCP senders are assumed to have an unlimited
amount of data to send, packets are transmitted in bursts (of a
congestion window size); when a burst hits a overflowing
queue, its whole tail (or possibly the whole burst) is discarded.
Consequently, the sender will wait in vain for the
corresponding acknowledgements until the RTO expires.

When DropTail queue management is deployed shortening
the reaction time of TCP senders to packet loss is not
necessarily an advantage. In fact, when congestion arises
queues fill up completely and bursts of packets are being
discarder. Immediate retransmission can result in retransmitted
packets finding buffers still (almost) full, hence perpetuating
the congestion state and causing more packets to be discarded.
Instead, with TED AQM packets are dropped based on their
deadline, most likely before queues become full and, as
confirmed by the results presented below, a prompt reaction of
TCP senders can improve its goodput without perpetrating the
network congestion state.

A second modification to TCP aimed at improving its
goodput is related to the calculation of its RTO. Heterogeneous
communication networks with their variety of application
demands, uncertain time-varying traffic loads, and mixture of
wired and wireless links pose several challenging problems in
modeling and control. One of the major problems is setting the
TCP time out based on a roundtrip time (RTT) estimation,
which is a particularly important for efficient end to end
congestion control, especially in scenarios where dynamically
changing traffic flows cause a bottleneck link to rapidly build
up a queue, which in turn induces rapid RTT changes. TCP
uses different algorithms to estimate a connection RTT, but all
of the only provide an approximation. As demonstrated in [6],
in many scenarios the majority of window decrease events is
due to time-outs rather then fast retransmit. If the time-out is
set too long, possibly due to an over estimation of the RTT, the
TCP algorithm does not promptly react to loss and connection
performance (in terms of throughput and goodput) decreases.

If TED is deployed in the network, an upper bound on the
end to end delay can be calculated based on the deadline set in
network nodes. Specifically, maxD is the maximum one way
delay of a packet belonging to a TCP connection and the
maximum RTT can be calculated as the sum of maxD
corresponding to each way. The TCP RTO can thus be set to
maximum RTT on the connection path so that TCP operates
with a precise, deterministic, and shorter RTO, hence being
more reactive in recovering from losses. Figure 5 shows, for
connection C11, the maximum RTT — to be possibly used as
RTO — resulting from TED AQM with the deadlines set in
simulation scenario S3 and the RTO calculated by TCP based
on Karn's algorithm [7] with DropTail queue management.

Figure 6 plots the goodput of short TCP connections and
the average overall goodput on the bottleneck link with
combinations of the two queue management policies and loss
recovery variants described so far.

0

2

4

6

8

10

12

14

16

18

20

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4
Time (sec)

Ti
m

e-
ou

t (
m

s)
TCP time-out Time-driven Time-out

Figure 5 Time-Driven RTO vs RTO estimated by TCP Reno for C2

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

C5 C6 C8 C9 C10

AVERAGE
GOODPUT

over Bottleneck

N
or

m
al

iz
ed

 G
oo

dP
ut

DropTail Infinite S3 TED S3 TED 1 ACK S3 TED 1 Ack and TDTO

Figure 6 Normalized goodput of short TCP connections and

average goodput over bottleneck link.

As expected, modifications to the loss recovery algorithm
result in improved goodput of shorter TCP connections (for
which a shorter deadline has been set) with TED AQM. This
improves the overall network goodput and utilization. The
goodput achieved with the DropTail queue management policy
with infinite buffer is plotted as an upper bound on the
achievable overall goodput on the bottleneck link. As it can be
seen in Figure 6, although the goodput with DropTail queue
management is still higher, deployment of TED AQM and both
the 1ACK and TED-driven RTO (TDTO) modifications result
in a 4 Mb/s increase of the average goodput on the bottleneck
link, of which 2,62 Mb/s stemming from the 1 ACK
modification and the rest stemming from the TED RTO
modification. The fairness index shown in TABLE IV
demonstrates that the two above described modifications to
TCP’s loss recovery algorithm do not compromise the
capability of TED’s to improve fairness.

TABLE IV
JAIN’S FAIRNESS INDEX WITH MODIFIED LOSS RECOVERY

Simulations Jain’s Fairness Index
DropTail Finite 1 ACK 0,759
TED 1 ACK 0,997
TED 1 ACK and TDTO 0,997

IV. CONCLUSION AND FUTURE WORK
This paper addresses the fundamental and widely studied

issue of fairly sharing congested links with end-to-end
congestion control, such as in TCP, and presents a solution
based on Time-driven Early Discard (TED), a novel AQM
(advanced queue management) technique. Packets waiting in a
queue are dropped based on a deadline on the packet service
time. Various options have been described for the application

of the deadline (i.e., per-node vs. end-to-end deadlines, per-
packet vs. per-flow deadlines) and one of them (i.e., per-flow,
end-to-end deadlines) assessed by simulation in scenarios
featuring different choices of the system parameters. The
presented results show the effectiveness of the proposed
approach in ensuring that TCP connections fairly share
bottleneck link when the deadline associated to a connection is
proportional to its round trip time (RTT).

In conditions of light load packets do not spend much time
in queues, do not reach their deadline, and no packet is
discarded — i.e., TED is adaptive. When congestion arises,
packets with shorter deadlines (i.e., packets belonging to TCP
connections with shorter RTT) are the first being dropped.
These packet losses trigger the TCP congestion control
algorithm that reduces the connection throughput, i.e., fairness
is enforced by constraining shorter TCP connections. As in
most other proposed solutions to the fairness problem (see [8]
as an example), the improvement in fairness is traded for a
reduction of the overall goodput. However, the presented
results show a 7% goodput reduction in face of a 15% fairness
improvement.

Moreover, the presented results show that the goodput
reduction can be limited to 5% with two simple modifications
to the mechanisms that govern TCP reaction to loss: (i)
detecting packet loss with the reception of a single duplicated
acknowledgement (rather then three) and (ii) setting the
retransmission time out according to the TED deadline
associated to the TCP connection.

A delicate issue with regard to the presented approach is the
algorithm for choosing the deadline to be associated to each
flow and its implementation. This issue together with the
assessment of the impact of the choice of non-optimal
deadlines will be the object of further work. Another direction
for future studies is a variant of this novel AQM that uses
service time as a fundamental parameter to enforce fairness and
goodput by limiting the oscillation of the congestion control
window, while avoiding packet dropping. For example, packet
marking or monitoring of the one-way delay variations could
be deployed for this purpose.

REFERENCES
[1] S. Floyd, V. Jacobson, et al., “Recommendations on Queue Management

and Congestion Avoidance in the Internet,” Request for comments:
2309, April 1998.

[2] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking,
1(4):397-413, August 1993.

[3] T. Hamann and J. Walrand, “A new fair window algorithm for ECN
capable TCP (new-ECN),” IEEE INFOCOM 2000, March 2000.

[4] D. Linand R. Morris, “Dynamics of random early detection,” ACM
SIGCOMM’97, pp.127-137, October 1997.

[5] I. Stoica, S. Schenker and Zhang, “Core stateless fair queuing: Achiving
approximately bandwidth allocations in high speed network,” ACM
SIGCOMM 1998, pp 118-130, September 1998.

[6] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. “Modeling TCP
throughput: A simple model and its empirical variations,” ACM
SIGCOMM 1998, September 1998.

[7] V. Paxson, M. Allman, “Computing TCP's Retransmission Timer,”
Request for Comments: 2988, November 2000.

[8] W.-C. Feng, A. Kapadia, S. Thulasidasan, “GREEN: proactive queue
management over a best-effort network,” in Proceedings of
GLOBECOM 2002, pp. 1774-1778, November 2002.

