Towards Effective Portability of
Packet Handling Applications Across Heterogeneous
Hardware Platforms

Mario Baldi, Fulvio Risso

Politecnico di Torino, Dipartimento di Automaticdrdormatica, Torino, Italy
{mario.baldi, fulvio.risso}@polito.it

Abstract. This paper presents tiNetwork Virtual Machine (NetVM), a virtual
network processor optimized for implementation amdcution of packet han-
dling applications. As a Java Virtual Machine valiges a CPU, the NetVM
virtualizes a network processor. The NetVM is expedo provide a unified
layer for networking tasks (e.g., packet filteripgcket counting, string match-
ing) performed by various network applicationseffialls, network monitors,
intrusion detectors) so that they can be executedny network device, rang-
ing from high-end routers to small appliances. Mweg, the NetVM will pro-
vide efficient mapping of the elementary functioties used to realize the
above mentioned networking tasks onto specific\lward functional units (e.g.,
ASICs, FPGAs, and network processing elementsyde in special purpose
hardware systems possibly deployed to implementoritdevices.

1. Introduction

An increasing number of network applications perfogngome sort of packet
processing are being deployed on current IP netwdhkedl known examples are
firewalls, intrusion detection systems (IDS), networknitors, whose execution is
must take place in a specific location within thewwek (e.g., backbone, network
edge, on end systems) or, in some cases, be distribateds different devices. In
general, such network applications must be deployeeeondifferent (hardware and
software) platforms, ranging from routers, to netwapkliances, personal computers,
smartphones. In some cases, the whole range of potemget platforms is not even
precisely and finally known at development time.

A development and execution platform for packetdiag applications with fea-
tures comparable to the ones of Java and CLR hastbesriar not available. This
paper reports on work aiming at designing, implementand assessing such a plat-
form based on &letwork Virtual Machine (NetVM), a new architecture for a (virtual)
network processor in which execution of packet hawgdlielated functions is opti-

This work has been carried out within the frameuaf the QUASAR project, funded by the
Italian Ministry of Education, University and Resga (MIUR) as part of the PRIN 2004
Funding Program. Its presentation has been sugbbstehe European Union under the E-
Next Project FP6-506869.

mized. Specifically, when the NetVM is deployed @iwork processors or hardware
architectures, packet handling related functionsbksamapped directly on underlying
special purpose hardware (such as ASICs, CAMs, etoks$hta their virtualization in
what are called NetVM coprocessors. This virtual devécprogrammed with an as-
sembly language, or NetVM bytecode, that supports afsieteractions among the
various blocks (e.g. memory, execution units, etc.) enlié NetVM. The project re-
ported by this work addresses also the interaction leetWetVM and external envi-
ronment, e.g. how to download code to the NetVMy lio get the results of code
execution, etc.

Network Processing

Program

(high level
programming language)

(NetPDL)

l Protocol Database

Compiler I

NetVM Bytecode

Other tools

NetVM or Just-in-time compiler

Native code‘ Native code| Native code

Network processor or other
hardware system

Virtual machines are the basis for the “write oncey anywhere” paradigm, thus
enabling the realization and deployment of portagplications. Even though from
certain points of view the NetVM has a more limisepe than Java and CLR virtual
machines (i.e., the NetVM targets a smaller range ppliations), its goals are
somewhat more ambitious. In fact, the latter aim atiegdjpon portability across plat-
forms that, while different from both hardware andtvgare (i.e., operating system)
point of view, are similar in being designed to sapmeneric applications. Instead,
the NetVM must combine portability and performartbés translates in the capability
of effectively deploying available hardware resosrgsuch as processing power,
memory, functional units) notwithstanding the sigrahtly different architecture and
components of the various hardware platforms targeted

The efficiency and portability of the NetVM has arsfggcant by-product: it makes
it a potential candidate for becoming a universaliaption development platform for
network processing units (NPUs). Network processors contbgiepacket process-
ing rates and programmability. However, programmiri)J§ is a complex task re-
quiring detailed knowledge of their architectureorgover, due to the significant ar-
chitectural differences, applications must be re-amittfor each NPU model.
Deploying a virtual machine could help dealing wiitle diversity of network proces-
sors by offering a common platform for writing and exéw portable applications.
On the one hand, the NetVM hides the architectuesdits of the underlying NPU
from the programmer. On the other hand, being dedigpecifically for network

Fig. 1. NetVM framework.

packet processing, the NetVM has un-matched potéiotiaffective execution on a
hardware platform specifically designed for the sammpgse.

NetVM programming is further simplified by the definiti of a high-level pro-
gramming language that operates according to packstrigtions realized with
NetPDL (Network Packet Description Language) [3] asdcompiled into native
NetVM bytecode, as shown in the top part of FigOhce NetVM support be pro-
vided by commonly deployed network gear, distributgglications could be based
on downloading NetVM code on various network nodes pmssibly collecting the
results deriving by its execution.

This paper is structured as follows. Alternatives fag ttnplementation of the
NetVM are presented in Section 2. Section 3 outlthesproposed NetVM architec-
ture discussing its main components; performance ssave tackled in Section 4.
Section 5 draws some conclusions and briefs currehfuanre work.

2. NetVM Implementation

The NetVM aims at providing programmers with an @edtural reference, so that
they can concentrate on what to do on packets, rrétthe how to do that. This has
been dealt with once for all during the NetVM implentation. This section focuses
on how to implement the NetVM on both end-systemsratdiork nodes.

Several choices are available, ranging from softwaralaion — NetVM byte-
code is interpreted and for each instruction a pidagative code is executed to per-
form the corresponding function — optionally with sifiechardware support (se-
lected instructions can be mapped to specific harg\awailable on that platform), to
recompilation techniques — e.g. an ahead-of-timeTAOr just-in-time (JIT) com-
piler can translate NetVM bytecode into assemblerifpdar the given platform (es.
x86, IXP2400, etc), therefore making use of the psoeregisters instead of operat-
ing on a stack.

A further option is to implement the NetVM archite&un hardware, i.e., the pro-
posed architecture can be used as the basis fateign of a hardware device for
network processing (e.g. VHDL can be used to craatew chip that implements the
NetVM). Taking this option a step further, the Net\ddde implementing a set of
functionalities (e.g., a NetVM program that tracke amount of IPv6 traffic) could
be compiled in the hardware description of a (gmgdntegrated) hardware system
that implements such functionality (e.g., an ASICrF®GA configuration). In other
words, the NetVM could provide support to fast prgpitig, specification, and im-
plementation of network oriented hardware systems.

Since the NetVM design has been modeled after trdemanetwork processor ar-
chitecture, perhaps the most appropriate implementafption for the NetVM is an
AOT/JIT compiler that maps NetVM assembler into a netwmmocessor’'s native
code. This approach also solves one of the problemstafork processors, which is
their complexity from the programmability point aéw.

3. NetVM Architecture and Components

The main architectural choices of the NetVM wereehi by the goal of achieving
flexibility, simplicity, andefficiency and built upon the experiences maturated in the
field of Network Processing Unit (NPU) architectusisce they are specifically tar-
geted to network packet processing. The resulting Medvthitecture is modular and
built around the concept d?rocessing Element (NetPE), which virtualizes (or, it
could be said, is inspired to) the actual micro-engirne NPU

Processing Elements deal with only few tasks, but bae to perform them very
fast: they have to process data at wire speed anehintime, they have to process
variable size data (e.g. IP payload) or/and fragetkdata (e.g. an IP payload frag-
mented over several ATM cells). In addition, they sti@xecute specific tasks, such
as binary searches in complex tree structures and CREid@®Redundancy Code)
calculation with stringent time constraints.

Multithreading is an expected feature of a NPU,deesin objective of our architec-
tural design: in fact packets are often indepenétemt each other and suitable to be
processed independently. For example, one of theNastork Processors — the In-
tel IXP1200 — is composed of six processing elementeddbcket Engines. The
larger the number of Processing Elements, the higtteeiachievable degree of par-
allelism, since independent packets could be distribigtéigese units.

NetPE, iy NetPE, S
(e.g. filtering) 34 (e.g. session statistics)|3 &|
3

[ceneral
“ |Purpose cP | | |

NetVM

‘ Shared Memory ‘ ‘ G ‘ ‘ Crypto ‘ ‘Class#lcauon‘

Fig. 2.NetVM configuration example.

A NetPE is a virtual CPU (with an instruction set dochl memory) that executes
an assembly program that performs a specific functighnaaintains private state. A
NetVM application is executed by several NetPEs ¢iaample, Fig. 2 shows an ap-
plication deploying two NetPEs), each of which manplement a simple functional-
ity; complex structures can be built by connectififferent NetPEs together. More-
over NetPEs use specialized functional units (coprocgsshown in Fig. 2) and
various types of memories to exchange data. This modighar derives from the ob-
servation that many packet-handling applicationshEdecomposed in simple func-
tional blocks that can be connected in complex ires. These structures can exploit
parallelism or sequentiality to achieve higher thiqug.

3.1. Processing Element (NetPE) Architecture

The general architecture of a NetPE includes sixsteg (Program Counter, Code
Segment Length, Data Segment Length, Packet Buféeigth, Connection Table
Length, Stack Pointer) in support to the processorabipa, a stack used for instruc-
tion operands, a connection table whose purpose igeditin Section 3.2, and a
memory encompassing 4 independent segments (Sectjon 3.3

Like most existing virtual processors, the NetVM hastaak-based design where
each NetPE has its own stack. A stack-based virtumalegsor does not encompass
general-purpose registers as instructions that nestbte or process a value make
use of the stack. This grants portability, a plaid eampact instruction set and a sim-
ple virtual machine. The consequence of this chisiteat.

The execution model ievent-based. This means that the execution of a NetPE is
activated by external events, each one triggeripgriacular portion of code. Typical
events are the arrival of a packet from an infhé,request of a packet from an output
or the expiration of a timer.

3.2. Internal and external connections

Connections are used to connect a NetPE with other NetPEs, Wwithphysical
network interfaces, and eventually with user appbcest A NetPE can have a num-
ber of input and outpugxchange ports (or ports for the sake of brevity), each coupled
to an exchange buffer. Each connection connectaigpubport of a NetPE to an in-
put port of another one and is used to move datallyquackets, between the two.

Although the meaning of a connection is differehe tonnection model of the
NetVM is similar to the one of Cliék Particularly, two types of connections are de-
fined:

e Push connection: the upstream NetPE passes data to thé&e Nettthe other
end of the connection. This is the way packets usuatlye from one process-
ing function to the next one in network devices.

e Pull connection: the downstream NetPE initiates datestearby requesting
the NetPE at the other end of the connection tpuiwa packet. Two options
are provided for the downstream NetPE in case nogpaskavailable:if it
enters a wait stateii an empty exchange buffer is obtained. For exanaple,
NetPE that extracts packets from a buffer and sends démeam output inter-
face uses a pull connection.

Also ports can be either push or pull. The NetVM metienvironment checks the
validity of a NetPE interconnection configurationcaeation time since there may be
some illegal configuration, such as a connection betageush port and a pull port.

The number and type of ports of a NetPE is definethbyNetVM application and
is maintained in th€onnection Table within the NetPE, which is a read-only mem-
ory portion. The NetVM runtime environment fills otite connection table during
configuration instantiation. Programs can use itttaim, for every connection, the ID

1n Click [5] a connection is a direct call to a-€method, while in NetVM it is a communica-
tion channel between two independent entities.

inside NetVM environment, the type (push / pull), d@ne direction (incoming or out-
going).

The NetVM communicates with external entities thioud NetVM sockets. For
example, if a NetVM is deployed inside the operatggtem of a desktop PC, exter-
nal entities could be network devices, file streamgsar applications that rely on the
NetVM for low-level operations like filtering or nebrk monitoring.

Applications that are intended to receive packetsxfeoNetVM deploy a socket
connected, through a push connection, to the pughubport of a NetPE. The trans-
fer of packets is initiated by the virtual machine.(iby the connected NetPE) and the
application receives them through a libpcap-stylecftlback function. Alternatively,
an application that is supposed to request data frddateM deploys a socket con-
nected to the pull output port of a NetPE. Pullrextions are appropriate to applica-
tions that retrieve tables, counters, flows, and atheilar data.

An advantage of the socket/exchange port modekisttansferred data is generic
since exchange buffers are simple data containefd|dtvs that the application does
not have any implicit information about the datattt receives, i.e., about data type,
which must be provided in some other way.

3.3. Memory architecture

A NetPE has four types of memory: one shared amonyelPEs ghared mem-
ory), one for private datadéta memory), one (local to the NetPE) that contains the
program that is being executembde memory) and one that contains the data (usually
a network packet) that is being processedhange buffer). Shared memory can be
used to store data that is needed concurrently by thareone NetPE (e.g., routing
tables or state information). A NetPE is not compeitedse the shared memory: if it
needs only local storage, only the Data Memory segjimarsed. This architecture al-
lows to better isolate different kinds of memory aodricrease efficiency through
better parallelization of memory accesses. Memory addremse 32-bit wide, al-
though we do not expect to have such amount of me@B) in network devices.

Since the NetVM may be potentially mapped on embedystems and network
processors, the use of high-level memory managemstarsg like garbage collectors
is not feasible. Therefore, the bytecode has a dieat of the memory. Furthermore,
the memory isstatically allocated during the initialization phase: the peoyg itself,
by means of appropriate opcodes, specifies the anodumemory it needs for being
able to work properly. Obviously, these instructioas ¢ail if not enough physical
memory is present.

The flexibility lost with this approach is balanced higher efficiency: the pro-
gram can access the memory without intermediation themkad-hodoad andstore
instructions. Specific instructions for buffer copi@srecurrent operation in network
processing; some platform have even ad-hoc hardwiéts) are provided as well, ei-
ther inside the same memory or between different dMesover, knowing the posi-
tion and the amount of memory before program execullows very fast accesses
when an AOT/JIT compiler is used because memory sffset be pre-computed.

3.4. Exchange Buffers

Packets are stored in specific buffers, cadbethange buffers, which are shared by
two NetPE that are on the same processing path im tydminimize racing condi-
tions (and avoid bottlenecks) when exchanging drtainstance, the NetPE1 in Fig.
2 will copy output data (e.g. the filtered packiaetjhe exchange buffer, which is then
made accessible to NetPE2 for further elaboratiapn @mputing session statistics).
Although, in principle, data can be moved from aMeto another through the shared
memory, this could lead to very poor performance bseahis memory could be-
come the bottleneck. Vice versa, exchange buffergigeca very efficient exchange
mechanism between NetPEs that are on the same procpating

In order to increase packet-handling efficiencyywoek-specific instructions (e.g.
string search) and coprocessors may have direct accegshange buffers. Instruc-
tions for data transfer (to, from and between exchdmdgfers) are provided as well.
Furthermore, instead of moving packet data arod&dPEs can operate on the data
contained in the exchange buffer, which are thenvedd from a NetPE to another.
This is very efficient because exchanged buffers aterenlly moved; the NetVM
guarantees exclusive access to them, so that onlyetrENthat is currently involved
in the processing can access to that data.

The typical size of exchange buffer is usually ledito some kilobytes; for larger
data the shared memory can be used. This stems frofacthtbat this memory is of-
ten used to transport packets, although it can ooatso generic data (e.g. fields, sta-
tistics or some generic state). In some cases, exchanigesbedin contain also sub-
portions of packets, as some network processors breaktpaateseparate cells for
internal transmission.

Usually, a NetPE has a single exchange buffer (i.prdtesses one packet at a
time), although the NetPE specification does not gmevo have multiple exchange
buffers. Exchange buffers are readable and writealittough some particular virtual
machine implementations could provide read only adeegserformance purposes or
hardware limitations. Under these platforms an AOT/dmgiler will refuse to build
the NetPEs that perform write operations on packetongm

3.5. Coprocessors

The NetVM instruction set is complemented by additidonactionalities specifi-
cally targeted to network processing. Such functitiealare provided byoproces-
sors that, as shown in Fig. 2, are shared among the NetR&king coprocessor func-
tionalities explicitly available to the NetVM prognener is beneficial when the
NetVM is executed on both general-purpose processuatsnatwork processors or
special purpose hardware systems.

On general purpose systems coprocessors are realizediby code possibly im-
plementing optimized algorithms. Code and data sirastcan be shared among dif-
ferent modules, thus granting efficient resource usageexample, in a NetVM con-
figuration with several NetPEs using the CRC32 fuomlity, the same coprocessor
code can be used by all the NetPEs. If the impleatiemt of the CRC32 coprocessor
is improved, every NetPE benefits from it without aimamge in the NetVM imple-

mentation or in the application code. Also, more plax functionalities, such as

string search or classification, can share data smegtand tables among different
modules for even better efficiency and resource usAgeexample is the Aho-

Corasick string-matching algorithm, which can buildrege automaton to search for
multiple strings as requested by different NetPEs.

On special purpose hardware systems, such as netwar&spors, COprocessors
can be mapped on functional units or ASICs, wheesegmt. Consequently, on the one
hand the efficiency of NetVM programs is significanihcreased when the target
platform provides the proper hardware. On the olfard, writing NetVM programs
represents a simple way of programming network processmther special purpose
hardware systems without having to know their hardveaohitectural details, yet
while exploiting the benefits of their hardware sfietties.

Communications with NetPEs is based on a well-definedexc (i.e., not specific
of a given processor) interface based on the IN add@ @sembly primitives, while
parameters are pushed on the top of the stack. Thisugiees a generic invocation
method for any coprocessor without the need ofdedicated instructions; therefore
coprocessors can be added without modifying the Naftecode.

A “standard” coprocessor library (that includes asifasation, a connection track-
ing, a string search and a checksum coprocessor, alttsauge are still under devel-
opment) is defined in the NetVM specification: aidaNetVM implementation
should implement this library and each program using oaprocessors of the stan-
dard library should work on any valid NetVM. Additial coprocessors can be added
to the library by NetVM implementations or third palibraries can be “linked” to a
NetVM and used by applications that have been wriitedeploy the functionalities
of non-standard coprocessors.

3.6. High Level Programming Language

NetVM programs are generally written in a high legedgramming language de-
signed for networking applications, specifically foscket processing. One of such
language (NetPFL) enables manipulations of packetdhaader fields whose format
is described through the Network Packet Descriptianduage (NetPDL) [3]. Al-
though a detailed description of NetPDL and Neti¥-butside the scope of this pa-
per, a sample is shown in Fig. 3 to offer a glancéhan complexity of using the
NetVM. The code instructs the NetVM to return onétchange port number 1 all
packets that, when parsed as Ethernet frames, conmimathe0x0800 in their
Et her Type field. In other words, this code implements a fiftarIPv4 packets.

Fig. 3 shows both the syntax in the NetPFL languagk the equivalent in the
widely known tcpdump [2] packet filtering applicatioThe comparison shows that,
even though the NetVM provides the flexibility ofaneric packet processing engine,
programming a packet filter is not more complicateaht specifying it for tcpdump,
i.e., a utility specifically targeted and optimizéat packet filtering. Hence, the in-
creased flexibility of the NetVM is not traded focieased programming complexity,
as well as for (significantly) lower performance, ascdssed in the next section.

Net PFL: ethernet.type == 0x800 ReturnPacket on port 1
tcpdunp: ether proto 0x800

Fig. 3.High-level code to filter IPv4 packets, in both REL and tcpdump syntax.

4, Performance Evaluation

Although the current implementation of the NetVMstill in the early stages, a
few numerical results are reported in this sectioorder to provide a first evaluation
of the proposed architecture. To this purpose the Met¥ compared against the
Berkeley Packet Filter (BPF) [1], probably the Besbwn virtual machine in network
processing arena. Fig. 4 shows the assembly code edguirimplement the filter
shown in Fig. 3, for both the NetVM and BPF virtugchines.

Net VM assenbl y BPF assenbl y
; Push Port Handler 0) Idh [12] ; load the ethertype field
segment . push 1) jeq #0x800 jt 2 jf 3 ; junp to 2) if true, else 3)
2) ret #1514 ; return the packet length
.locals 5 3) ret #0 ; return false
. maxst acksi ze 10
pop ; pop the "calling” port ID
push 12 ; push the location of the ethertype
upl oad. 16 ; load the ethertype field
push 2048 . push 0x800 (=IP)
jcnp.eq send ; cnp the 2 topnost values; jump if true
ret ; otherwise do nothing and return
send:
pkt.send outl ; send the packet to port outl
ret ; return
Ends

Fig. 4.NetVM and BPF code to filter IPv4 packets.

A first comparison shows that the NetVM assembly idnitefy richer than the
BPF one, which gives an insight about the possibilftthe NetVM assembly. How-
ever the resulting program is far less compact (twee” is six instructions against
tree in BPF). This shows one of the most importantagtaristics of the NetVM ar-
chitecture: the stack-based virtual machine is lessiefiti of a competing register-
based VM (such as the BPF is) because it cannot redysat of general-purpose reg-
isters. Hence, the raw performance obtained by Netévinot directly compete
against the ones obtained by the BPF.

Table 1.NetVM Performance Evaluation.

Virtual Machine Time for executing the “IPv4” filter (clock cycles)
NetVM 392
BPF 64

Table 1 shows the time needed to execute the pragreported in Fig. 4: as ex-
pected, the BPF outperforms the NetVM, mainly dueh® additional instructions
(related to the stack-based architecture) and therpaturity of the code.

However, a NetVM is intended as a reference desigmendo not expect its code
to be executed as it is. In order to achieve be#eiopmance, NetVM code must be
translated into native code (thorough a recompifatit execution-time, i.e., AOT/JIT
compiling) according to the characteristics of thggét platform. This justifies the
choice of a stack-based machine, which is intrinsicgiyver, but its instructions are
much simpler to be translated into native code.dPeréinces are expected to be much
better after a dynamic recompilation. The impleméntabf an AOT/JIT compiler is
part of our future work on the NetVM.

5. Conclusions

This paper presents the architecture and preliminafpipgance evaluation of the
NetVM, a virtual machine optimized for network pragiming. The paper discusses
the motivations behind the definition of such arattitee and the benefits stemming
from its deployment on several hardware platforms.s€hiaclude simplifying and
speeding up the development of packet handling egtins whose execution can be
efficiently delegated to specialized components stamized hardware architectures.
Moreover, the NetVM provides a unifying programmiagvironment for various
hardware architecture, thus offering portabilitypaicket handling applications across
different hardware and software platforms. Furtiiee, proposed architecture can be
deployed as a reference architecture for the impl&atien of hardware networking
systems. Finally, the NetVM can be a novel tool forcfation, fast prototyping,
and implementation of hardware networking systems.

Some preliminary results on the performance of a @rif@tVM program shows
that other simpler virtual machines targeted to ndtimgrapplications outperform the
NetVM that, in turn, provides higher flexibility. @oing work on the implementation
of a JIT compiler for NetVM code aims at reversingabfeast reducing this perform-
ance discrepancy.

Since writing NetVM native code (bytecode) is netyhandy, work is being done
towards the definition of a high level programmiagduage and the implementation
of the corresponding compiler into NetVM bytecode.

Finally, in order to fully demonstrate the benefd$so in terms of performance,
brought by the NetVM, further work includes the lempentation of the virtual ma-
chine and its AOT/JIT compiler for a commercial netivprocessor.

Bibliography

[1] S. McCanne, V. Jacobson, The BSD Packet Fikdtew Architecture for User-
level Packet Capture. Proceedings of the 1993 WIMSENIX Technical Con-
ference (San Diego, CA, Jan. 1993), USENIX.

10

(2]

(3]
(4]

(5]

V. Jacobson, C. Leres and S. McCanne, libpcap réage Berkeley Laboratory,
Berkeley, CA. Initial public release June 1994. Cuilse Available at
http://www.tcpdump.org

F. Risso, M. Baldi, NetPDL: An Extensible XML-be Language for Packet
Header Description, To Appear in Computer NetworkSNINET), Elsevier.

L. Degioanni, M. Baldi, D. Buffa, F. Risso, F.iiaho, G. Varenni, Network Vir-
tual Machine (NetVM): A New Architecture for Effient and Portable Network
Applications, 8' IEEE International Conference on Telecommunicati@en-
TEL 2005), Zagreb (Croatia), June 2005.

R. Morris, E. Kohler, J. Jannotti and M. F. KaadhoEhe Click modular router.
Proceedings of the 1999 Symposium on Operating Systemsples.

11

