
ALEX: Improving SIP Support in Systems with
Multiple Network Addresses

Mario Baldi, Flavio Marinone, Fulvio Risso, Livio Torrero
Dipartimento di Automatica e Informatica

Politecnico di Torino
Torino, Italy

{mario.baldi,flavio.marinone,fulvio.risso,livio.tor rero}@polito.it

Abstract — The successful and increasingly adopted Session
initiation Protocol (SIP) does not adequately support hosts with
multiple network addresses, such as dual-stack (IPv4-IPv6) or
IPv6 multi-homed devices. This paper presents the Address List
EXtension (ALEX) to SIP that adds effective support to systems
with multiple addresses, such as dual-stack hosts or multi-homed
IPv6 hosts. ALEX enables IPv6 transport to be used for SIP
messages, as well as for communication sessions between SIP
User Agents (UAs), whenever possible and without compromising
compatibility with ALEX-unaware UAs and SIP servers.

Keywords — SIP; IPv4-IPv6 transition; multi-homed devices;
VoIP and ToIP in dual-stack environments

I. INTRODUCTION

SIP (Session Initiation Protocol) is a general purpose
signaling protocol that aims at establishing voice, video,
gaming, and other types of application-level sessions between
two or more peers. However, this protocol and its related
infrastructure do not support end-systems that have multiple
network addresses, e.g. multi-homed machines or dual-stack
ones, which are hereafter called multi-address devices. This is a
major issue because new generation of mobile phones will
probably use mainly IPv6 and a larger number of dual-stack
machines will probably be deployed to make the transition to
the new network protocol easier. In the case of multi-homed
devices the choice of an address pair for communication might
impact performance and communication feasibility since
different network addresses might be reachable through
different routing paths. Hence, the capability to support
multiple addresses on the same device and choose the best
match between two peers is a must.

The current best practice to identify the target for a SIP
interaction is by means of a user agent (UA) identifier (UAID)
that is inserted in the contact field of the header of SIP
messages. Since each UA must have only one UAID, —
usually derived from one of its network addresses — this
approach is critical when a target UA can be reached through
multiple network addresses. Currently proposed solutions,
surveyed in Section IV, lack generality, being effective only in
some specific cases.

 This work has been carried out in the context of a research contract

granted by CSI-Piemonte (http://www.csi.it).

This paper proposes an extension to the SIP protocol called
ALEX (Address List EXtension) to add effective support of
multi-address devices. ALEX is simple, requires only minimal
modifications to SIP user agents and SIP servers, guarantees
compatibility with ALEX-unaware implementations, and
works with any application (e.g. voice/video calls, instant
messaging, etc.). Section II provides a brief overview of SIP in
order to lay the basis for the discussion in Section III on the
inadequacy of SIP when it comes to multi-address devices.
Section IV presents existing approaches to multi-address
device support with SIP and highlights their shortcomings.
Section V describes the proposed SIP extension in detail
highlighting its main features and strengths. Conclusions are
drawn in Section VI that also outlines further work directions.

II. SIP

The Session Initiation Protocol (SIP) is an application-level
signalling protocol that aims at establishing, modifying and
terminating a communication between peers. This protocol
provides a mechanism to locate the other peer, negotiate
capabilities, and start an application-dependent (voice, video,
shared whiteboard, messaging, and more) session. The protocol
encompasses a number of entities interacting with each other: a
User Agent Client (UAC) sending request messages and
processing the corresponding responses, a User Agent Server
(UAS) responsible for processing incoming request messages
and generating related responses, and a set of intermediate
servers. Although SIP UAs may communicate directly in order
to establish a connection without the presence of any
intermediate nodes, SIP servers make the signalling process
more flexible and allow simpler UA implementation.

SIP resources, such as users, mailboxes on a message
system, etc., are identified by Uniform Resource Identifiers
(SIP URIs). A special resource is the address-of-record (AOR)
that has a global scope and represents the “public address” (i.e.
the unique identifier) of a user (e.g. bob@foo.com). The AOR
cannot be used ‘as is’ and it has to be mapped to a physical
resource identifying the actual device (e.g. a SIP user agent
such as a soft-phone, or a mailbox if the user is offline)
associated to that user. In general, the AOR can be mapped to
several resources at the same time because a user can be
deploying several physical devices (mobile phone, office
phone, etc.).

Communications between entities rely on SIP messages,
text-based messages that are carried within a TCP/UDP
session. Among the most important information contained in
SIP messages (and relevant to this work), the contact field
contains a SIP URI that uniquely identifies a physical resource
associated to the user that generated the message. Often, the
contact field contains a SIP UA identifier consisting of a
user name and a fully qualified domain name (FQDN) or a
network address, e.g. bob@bobpc.foo.com or bob@1.2.3.4.
The deployment of a network address within the contact
field is very common as it offers a very simple method to
generate a unique identifier. However, it should be kept in
mind that the sole purpose of such address is the creation of a
unique identifier and (in principle) it should not have any
relationship with the IP address from which the SIP message is
arriving or the IP address to which a response should be sent.

Another relevant part of the SIP header is the via field that
specifies the address of each SIP node that forwards the
message. This field provides a way to track the path followed
by a SIP request so that the related SIP response can be
forwarded on the reverse path. A UA has to fill the via field
with its address before sending any message. When SIP servers
forward a message, they update its via by adding their address
on the top of the list.

Among SIP servers, the most important are the SIP
Registrar and the SIP Proxy. The SIP Registrar server keeps
track of all the UAs in its domain. A UA registers itself by
sending a REGISTER request, which contains the AOR of its
SIP user and one (or more) contact fields containing the
URIs of the devices used by the user; this information is stored
in the Location Service database that is often integrated with
the Registrar server, although it could be in principle separate.
The SIP Proxy server forwards incoming SIP messages to a
destination AOR; this process often requires the interaction
with the Location Service in order to get the list of contact
addresses associated to the AOR— i.e., the URI of the devices
the user is deploying. Routing of SIP messages can be fully
delegated to Proxy servers if Record Route field is included
(usually by a proxy), which forces SIP UAs to send SIP
messages through a SIP proxy even if a shortest path (e.g. UA
to UA interaction) is available. The Record Route field may be
essential in some cases, such as when UAs behind NATs are
able to communicate to specific servers, such as their SIP
proxy, but are not allowed to generally exchange messages
with any host.

Figure 1 shows a sample SIP session: a SIP UA (left)
wanting to start a media session sends an INVITE message to a
target SIP UA through two proxies. Only when the called party
accepts the invitation (the “200 OK” message) the media
session begins and data is exchanged directly between the
peers. Figure 1 shows also two key concepts of SIP: dialogs
and transactions. A transaction consists of one request and
corresponding responses. SIP responses are identified by a
code: the 2xx responses are called final responses and they
close a transaction. For instance, Figure 1 contains two
transactions, T1 and T2. Dialogs are relationships between
UAs initiated when the initiating peer receives a non-failure
response. Figure 1 shows a dialog created as a result of an

INVITE request, which is outside of the dialog itself. If a
Record Route field is not included in the messages, direct
communication between the two UAs is possible since each
UA can learn the IP address of its peer from the contact
field of received SIP messages. For example, in Figure 1 the
callee UA finds out the address of the caller UA from the URI
in contact field of the INVITE request, while the caller UA
devises the peer UA address from the URI in the contact
field of the “200 OK” response.

180 Ringing (8)

INVITE (2)

Media Data

ACK (12)

200 OK (9)

D

Caller Callee

Proxy
Server A

T
1

T
2

INVITE (1)

INVITE (4)100 Trying (3)

180 Ringing (7)
180 Ringing (6)

200 OK (11)

BYE (13)

200 OK (14)

100 Trying (5)

Proxy
Server B

200 OK (10)

T
IM

E

Figure 1 Media session establishment through SIP INVITE message.

III. M OTIVATIONS

When direct interaction should take place between multi-
address SIP entities, each of them is faced with two problems:
(i) obtaining the complete list of network addresses of the
remote device and (ii) selecting the “best” source/destination
address pair to be used for the dialog. The reminder of this
section presents existing solutions to these problems in general
and discusses why these are not suitable to the case of SIP
devices.

A. Multi-address devices in a client-server environment

With common client-server protocols (such as HTTP, POP,
SMTP, etc.), a list of network addresses can be easily
associated to a host by assigning the host a unique name, such
as a Fully Qualified Domain Name (FQDN) and storing several
records (e.g. A and AAAA records) in the DNS associated to
the FQDN. Referring to such unique name when
communicating with the host indicates that any address
contained in the associated DNS records is equivalent for the
purposes of the communication.

A client that wants to contact the multi-address host obtains
from the DNS all the records associated to that name, getting to
know the capabilities of the server in terms of address families
(IPv4, IPv6) and network addresses. At this point the client has

to solve the second problem previously listed: which
source/destination address pair should be the best to use. At
first sight the solution seems straightforward: if both devices
are IPv6-capable the “best” address family is IPv6; in case of
failure, or if one of the hosts is IPv4 only, then IPv4 addresses
should be used. Moreover, the choice among addresses of the
same family is usually done statically in IPv4 (often the first
IPv4 address returned is used), and dynamically in IPv6
through the Source Address Selection [6] mechanism.
However, in general the scenario might be complicated since
some of the addresses of one host might not be reachable by
the other or might be associated to “long” routes.

B. Multi-address devices in a SIP environment

The SIP protocol is not a simple client-server protocol.
Although some of its functions are based on the classical
client-server paradigm (e.g. the SIP REGISTER message
which is used to register a SIP UA within its SIP server), many
others are not. For instance, a SIP INVITE message usually
travels from a UA to its SIP server, gets forwarded to the SIP
server of the target domain, and finally to the target UA; in
addition, the response message can be sent directly from the
contacted UA to the session originator.

Intermediate devices possibly participating into a SIP
transaction (often an INVITE message involves two UAs and
two proxy servers) result in a much more complicated
“capability negotiation” with regard to network addresses. For
instance, the message between the originating UA and its SIP
server can be sent through IPv6 if both are supporting this
protocol, but the message coming back from the called UA
may be using IPv4 and yet the originating client must be able
to understand that this message is part of the dialog that was
started in IPv6. Moreover, the destination of some SIP
messages (e.g. INVITE, but not REGISTER) is specified in
terms of the called user’s SIP AOR, which can be associated to
several devices. Therefore an additional resolution step1 is
needed to locate the set of UAs associated to a SIP user. Then,
for each UA, the list of its network addresses must be obtained
and one chosen among them for the session.

In order to better define the problem, the reminder of this
section analyzes the possible interactions between SIP devices,
pointing out the most problematic issues.

a) Messages from SIP UAs to SIP servers
Messages from SIP UAs to SIP servers (e.g. the first step

for an INVITE message) do not present any new problem as
the interaction between these devices follows the typical client-
server paradigm. The SIP UA obtains the address list of the SIP
server through a set of DNS queries that involve NAPTR and
SRV records, in addition to the well-known A and AAAA
ones. Hence, existing methods to select the best
source/destination address pair can be applied. It is important
to point out that an address possibly specified in the contact
field of SIP messages (e.g. contact: bob@1.2.3.4)
might be different from the source address in the IP packet

1 See the two general problems mentioned at the beginning of Section III.

carrying the message to the server (e.g.
2001:760:400::1), according to the OSI layering model.

b) Messages from a SIP server to another SIP server
Messages from a SIP server to another SIP server (e.g. the

second step for an INVITE message, when the proxy server in
the caller’s domain forwards it to the proxy server in the
callee’s domain) are also based on a typical client-server
paradigm; hence addresses are handled as in the previous case.

c) Messages from a SIP server to a SIP UA
Messages from a SIP server to a SIP UA (e.g. the third step

for an INVITE message, when the proxy server in the callee’s
domain delivers the message to the called UA) are more critical
since the association of a list of addresses to a UA cannot be
effectively done through a FQDN and the DNS for a number of
reasons. First, it is not uncommon that a device running a UA
is not registered in a DNS server. Second, even if it is
registered in the DNS, keeping DNS entries updated is difficult
when addresses change rather often, which is common in
IPv6.2 In principle the SIP Registrar server could be used to
store the list of network addresses associated to each UA, but
SIP does not specify a way to do so. In fact, multiple contacts
can be associated within the SIP Registrar to an AOR, but they
are viewed as distinct UAs working for the same user, i.e.,
messages may be duplicated and sent concurrently to all listed
UAs. Instead when two addresses are associated to the same
UA only one must be used to transfer messages to the UA.

In any case, knowledge of the UA address list is not
essential in order to just deliver a SIP message since the contact
URI previously registered by the UA with the SIP Registrar
can be used. However, this does not enable the server to make
the best address choice or to switch to a different address in
case the one corresponding to the registered URI is no longer
working (e.g. due to a network failure).

d) Messages from a SIP UA to another SIP UA
Responses from a SIP UA to another SIP UA (e.g., the

“200 OK” message that closes an INVITE transaction) undergo
the same issues described for the previous case, since reply are
sent back on the same path of the original message (hence
using the via header). Hence, a called UA wanting to start
another transaction to the calling UA (e.g. a BYE message) can
rely only on information in the contact field of the received
SIP message. However, differently from previous case, the
approach is not necessarily effective even when just aiming at
delivering the message (without necessarily aiming at
optimising delivery). If, for example, the contact field
contains a URI formed from an IPv6 address and the called
device does not support IPv6, a direct communication cannot
take place, even if the calling UA is a dual-stack device —
which is unknown by the callee.

Message delivery can be ensured by including a Record
Route field which forces all messages to follow the same path

2 An IPv6 address changes, for example, after a variation of the MAC

address of a network interface, when the lifetime of the “privacy address” [7]
expires, or when a host changes its location.

— through proxies — and it does not allow direct peer-to-peer
interaction. However, this solution imposes an additional
overhead on the proxy servers, which may not be negligible
especially with applications (e.g. instant messaging) that
exchange SIP messages periodically. Moreover, while
providing a solution for delivering SIP messages, this approach
does not solve the problem for applications that require direct
UA-to-UA interaction (e.g. voice sessions), thus requiring each
UA to know the network addresses of the other one.

It can be concluded that an extension to SIP is required to
exchange an address list between SIP entities running on multi-
address devices, such as dual-stack and multi-homed hosts, in
order to efficiently enable dialog setup.

IV. RELATED WORK

The problem of supporting multi-address devices in SIP has
not been explored in depth in the literature. The reason is that
mostly IPv4-only hosts are currently being used, which rarely
have multiple addresses. Additionally, inadequate support of
multi-address IPv4 devices most likely results simply in under-
optimized SIP message transfer. However, when dual-stack
IPv4-IPv6 machines are deployed — which is going to become
more widespread — SIP UAs may not be able to successfully
start a dialog, as discussed in the previous section.

To the best of our knowledge, the only existing approach
for supporting multi-address devices in a dual-stack scenario
stems from the combination of ICE and ANAT. ICE
(Interactive Connectivity Establishment) [2] allows listing the
several network addresses associated to a UA, although they
must belong to the same address family. ANAT (Alternative
Network Address Types) [3][4] overcomes this limitation by
extending ICE to support dual-stack clients.

The ICE-ANAT combination is interesting as it supports
also “virtual” network addresses, such as the network address
dynamically substituted by a NAT (Network Address
Translator) into packets generated by or addressed to a host.
However, the ICE-ANAT solution inserts additional addressing
information in the SDP (Session Description Protocol) portion
of a SIP message, making this solution suitable only for media
flow establishment. In other words, this approach is not
applicable to a range of SIP-based applications that do not
deploy media flows, among which, for example, instant
messaging. Other ANAT open issues, described in [4], are
related to situations in which one of the UAs does not support
ANAT. In addition, the ICE-ANAT solution has a high degree
of complexity.

The solution proposed in the next section aims at
overcoming the issues of the ICE-ANAT, i.e., (i) providing
general (not only for media flow-based applications) support
for direct communication between UAs running on multi-
address devices (ii) with full backward compatibility.

V. THE ADDRESS LIST EXTENSION (ALEX)

The solution to the issues discussed in Section III is
presented in the following and is based on a SIP extension that
encompasses an information exchange to devise network layer
identification of a UA, rather than deriving it from the URI

communicated within the contact field. The SIP protocol
has been designed to be flexible and it supports ad-hoc
extensions that must be negotiated during the first message
exchange in a session between UAs. If both UAs support the
proposed extension then the added information can be used to
devise the best source/destination address pair for direct
communications between the UAs. The proposed extension is
beneficial when supported by UAs, and assures interoperation
of dual-stack UAs with IPv4-only UAs and proxies.

ALEX aims at optimising direct peering between two UAs
and is applicable only to SIP dialogs, provided that a SIP proxy
does not insert the Record Route field; ALEX related
information is included in SIP messages setting up the dialog.
ALEX is not suitable outside dialogs because in this case
messages are expected to be exchanged through proxies, either
because the data exchange is expected to be very small (hence
the dialog creation inserts an unnecessary overhead), or
because messages might be delivered to multiple destinations
(hence proxies are the only entities that can perform a message
forking); hence the address list of the other peer is useless.

A. Address field format

ALEX (Address List EXtension) requires the definition of
an address field whose specification in Backus-Naur Form
(BNF) [RFC2234] is shown in Figure 2. The address field is
present (one ore more times) in every request message that
creates a dialog with another peer to provide it with network
level information. A UA supporting ALEX builds an
address field for each (logical) interface it is listening to. For
instance, a dual-stack UA includes at least two address
fields in every message, one for its IPv4 address and one for its
IPv6 address. A require field with value ALEX precedes the
sequence of address fields to indicate that ALEX is
required.

ADDRESS EQUAL network-address \
 [; transport-address] ; c-p-q [; expire-t]
network-address = 1*64(alphanum)
transport-address = “port” EQUAL (alex-port)
c-p-q = "q" EQUAL qvalue
qvalue = ("0" ["." 0*3DIGIT]) \
 / ("1" ["." 0*3("0")])
alex-port = 1*8[DIGIT]
expire-t = “expires” EQUAL time-exp
time-exp = 1*8[DIGIT]

Figure 2 address: field specification.

The address field contains a network address, a q parameter
that defines the “quality” of the address within as a number
between 0 and 1 (higher numbers means higher preferences;
e.g. IPv6 addresses should have higher preference, leaving
IPv4 addresses as a “fallback” solution), an optional expires
parameter that defines a time validity for the corresponding
network address, and an optional port parameter to
communicate the SIP port in case it differs from the default
value.

Figure 3 shows a SIP INVITE message with ALEX extension.
A called UA supporting ALEX responds with a SIP 200 OK
message that includes the list of its addresses — in a sequence
of address fields. Otherwise, the callee refuses the

connection and forces the caller to retry through an INVITE
message without ALEX. The choice of bounding the
deployment of ALEX to the require field, and consequently
imposing the above behaviour, stems the experimental nature
of ALEX. In the future, ALEX support might be requested
through the support field instead, which does not force to
abort the dialog in case the called party does not support this
extension.

INVITE sip:bob@biloxi.com SIP/2.0
 To: Bob <sip:bob@biloxi.com>
 From: Alice <sip:alice@atl.com>
 Contact: <sip:alice@192.168.225.1>
 Require: ALEX
 Address: 192.168.225.1 ; q=0.1 ; expires=600
 Address: 2001:760:250:::1 ; q=0.9

Figure 3 SIP request from a UA with ALEX extension

B. Deployment principles

An ALEX capable UA must bind its SIP stack to every
network address available on the host. Both local and public
addresses suitable for communicating with other hosts are
included into its address list.

A UAC initiates a dialog with a UAS based on the URI of
the UAS or of its user (i.e., an AOR). The UAC sends the
initiating message (e.g., an INVITE message or a
SUBSCRIBE) to its SIP proxy server and the SIP infrastructure
(i.e., location service, SIP proxies, SIP redirectors) delivers
such message to the UAS. A UAC supporting ALEX includes
the extension in such first message, as exemplified by the
SUBSCRIBE message in Figure 4. A UAS supporting ALEX
extracts from received messages the information in the
address fields (see the right column of the SIP Dialog
Address Table of the called UA in Figure 4). When preparing a
reply message, the UAS includes one or more address fields
containing the list of its addresses, as exemplified by the first
200 OK message in Figure 4. Upon reception of the 200 OK
message the caller UA extracts and stores the addresses carried
by ALEX, as shown by its SIP Dialog Address Table in Figure
4.

Each of the two UAs involved in a dialog must select the
address pair to be used for direct communication with the peer
among all the pairs resulting from the combinations of
compatible local addresses and remote peer addresses learned
through ALEX. The first step of this selection consists in
identifying which of the possible pairs do actually enable
successful packet exchanges. To this purpose, UAs carry out an
Address Validation Process, as shown in Figure 4. The q
parameter associated to each address within ALEX extensions
is used to select a validated address pair when more than one is
available. The selected address pair is used in the direct
message exchanges within the dialog, as shown in the bottom
part of Figure 4, possibly including media packets.

The Address Validation Process is based on using the
address pair to be validated for exchanging IP packets that
carry a new SIP messages called VALIDATE. For the sake of
brevity, the mechanisms and protocols involved in the address

validation process are not described here and will be included
in future publications.

Proxy Server A Proxy Server B

time

Address Validation Process

200 OK

NOTIFY

UA1 (caller) UA2 (called)

SIP Dialog Address Table

Remote Peer

--

Local Peer

192.0.2.4
2001:6b8:400::1

SIP Dialog Address Table

Remote Peer

--

Local Peer

192.0.2.4
2001:6b8:400::1

SIP Dialog Address Table

Remote Peer

--

Local

192.168.225.1
2001:760:250::1

SIP Dialog Address Table

Remote Peer

--

Local

192.168.225.1
2001:760:250::1

SIP Dialog Address Table

Remote Peer

192.0.2.4
2001:6b8:400::1

Local Peer

192.168.225.1
2001:760:250::1

SIP Dialog Address Table

Remote Peer

192.0.2.4
2001:6b8:400::1

Local Peer

192.168.225.1
2001:760:250::1

SIP Dialog Address Table

Remote Peer
192.168.225.1

2001:760:250::1

Local Peer
192.0.2.4

2001:6b8:400::1

SIP Dialog Address Table

Remote Peer
192.168.225.1

2001:760:250::1

Local Peer
192.0.2.4

2001:6b8:400::1

SUBSCRIBE sip:bob@biloxi.com SIP/2.0
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atl.com>
Contact: <sip:alice@192.168.225.1>
Require: ALEX
Address: 192.168.225.1; q=0.1
Address: 2001:760:250::1; q=0.9

SIP/2.0 200 OK
To: Alice <sip:alice@atl.com>
From: Bob <sip:bob@biloxi.com>
Contact: <sip:bob@192.0.2.4>
Require: ALEX
Address: 192.0.2.4; q=0.1
Address: 2001:6b8:250::1; q=0.9

SIP Dialog Address Table

Remote Peer

192.0.2.4
*2001:6b8:400::1

Local Peer

192.168.225.1
*2001:760:250::1

SIP Dialog Address Table

Remote Peer

192.0.2.4
*2001:6b8:400::1

Local Peer

192.168.225.1
*2001:760:250::1

SIP Dialog Address Table

Remote Peer

192.168.225.1
*2001:760:250::1

Local Peer

192.0.2.4
*2001:6b8:400::1

SIP Dialog Address Table

Remote Peer

192.168.225.1
*2001:760:250::1

Local Peer

192.0.2.4
*2001:6b8:400::1

Local IP address:
192.168.225.1

Local IP address:
2001:760:250::1

Local IP address:
2001:6b8:400::1

Local IP address:
192.0.2.4

Figure 4 Example of message exchange between UAs with ALEX support.
Only the relevant messages are shown.

Remote peer addresses are cached for later communications
with the same UA. A UA must not consider and store remote
peer addresses that could not be validated, i.e., cannot be used
for communication with the remote peer. For instance, an IPv6-
only UA will keep only entries of the SIP dialog address table
marked as IPv6 addresses.

When a new dialog, like the SUBSCRIBE in Figure 4, is
negotiated between the same UAs, they compare the received
address list with the previously stored one. Pairs not changed
and not expired are used without need for validation, while
new pairs are to undergo the address validation process.

C. Backward compatibility

While an ALEX-aware UA uses the URI in the contact
field only for identifying its remote peer, a traditional UA uses
the information contained in this field for establishing a direct
communication with its remote peer. For this reason, an
ALEX-compliant UA shall anyway fill out the contact field
as it is done by ALEX unaware devices, which is stored in the
registar Proxy and it is used by all SIP devices (ALEX-aware
or not). When using an address in the contact field it shall
be IPv4 for three reasons: (i) in a dual-stack environment, IPv4
is understood by every UA, (ii) an IPv6 addresses size could
create problems to some IPv4-only UAs (due to
implementation-related bugs), and (iii) proxies could be IPv4
only.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents the Address List EXtension (ALEX) to
the Session Initiation Protocol (SIP) that adds effective support
to direct communications between User Agents (UAs) running
on hosts with multiple addresses, such as dual-stack hosts or
multi-homed IPv6 hosts. ALEX enables IPv6 transport to be
used for SIP messages whenever possible, without
compromising compatibility with ALEX-unaware UAs. Future
work is required to quantitatively assess the benefits of ALEX
in a generic multi-homed host scenario, where there could be
hosts with many interfaces and dual-stack capabilities.
Moreover, ALEX-based, lightweight, and low latency support
for NAT (network address translator) and firewall traversal
should be developed. Finally, the usage of ALEX for
optimizing the message exchange between UAs and SIP
proxies will be investigated.

REFERENCES
[1] J. Rosemberg et al., SIP: Session Initiation Protocol, IETF Network

Working Group, RFC 3261, June 2002.

[2] J. Rosenberg, Interactive Connectivity Establishment (ICE): A
Methodology for Network Address Translator (NAT) Traversal for
Multimedial Session Establishment Protocols, IETF Network Working
Group, http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-04.txt,
February 2005.

[3] G. Camarillo, J. Rosenberg, The Alternative Network Address Types
(ANAT) Semantics for the Session Description Protocol (SDP) Grouping
Framework, IETF Network Working Group, RFC 4091, June 2005.

[4] G. Camarillo, J. Rosenberg, Usage of the Session Description Protocol
(SDP) Alternative Network Address Types (ANAT) Semantics in the
Session Initiation Protocol (SIP), RFC 4092, June 2005.

[5] J. Mulahusic, H. Persson, SIP Issues in Dual-stack Environments, IETF
Network Working Group, draft-persson-sipping-sip-issues-dual-stack-
00.txt, February 2003.

[6] R. Draves, Default Address Selection for Internet Protocol version 6
(IPv6), IETF Network Working Group, RFC 3484, February 2003.

[7] T. Narten, R. Draves, Privacy Extensions for Stateless Address
Autoconfiguration in IPv6, IETF Network Working Group, RFC 3041,
Jan 2001.

