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Abstract     — The successful and increasingly adopted Session 
initiation Protocol (SIP) does not adequately support hosts with 
multiple network addresses, such as dual-stack (IPv4-IPv6) or 
IPv6 multi-homed devices. This paper presents the Address List 
EXtension (ALEX) to SIP that adds effective support to systems 
with multiple addresses, such as dual-stack hosts or multi-homed 
IPv6 hosts. ALEX enables IPv6 transport to be used for SIP 
messages, as well as for communication sessions between SIP 
User Agents (UAs), whenever possible and without compromising 
compatibility with ALEX-unaware UAs and SIP servers. 

Keywords — SIP; IPv4-IPv6 transition; multi-homed devices; 
VoIP and ToIP in dual-stack environments 

I. INTRODUCTION 

SIP (Session Initiation Protocol) is a general purpose 
signaling protocol that aims at establishing voice, video, 
gaming, and other types of application-level sessions between 
two or more peers. However, this protocol and its related 
infrastructure do not support end-systems that have multiple 
network addresses, e.g. multi-homed machines or dual-stack 
ones, which are hereafter called multi-address devices. This is a 
major issue because new generation of mobile phones will 
probably use mainly IPv6 and a larger number of dual-stack 
machines will probably be deployed to make the transition to 
the new network protocol easier. In the case of multi-homed 
devices the choice of an address pair for communication might 
impact performance and communication feasibility since 
different network addresses might be reachable through 
different routing paths. Hence, the capability to support 
multiple addresses on the same device and choose the best 
match between two peers is a must. 

The current best practice to identify the target for a SIP 
interaction is by means of a user agent (UA) identifier (UAID) 
that is inserted in the contact  field of the header of SIP 
messages. Since each UA must have only one UAID, — 
usually derived from one of its network addresses — this 
approach is critical when a target UA can be reached through 
multiple network addresses. Currently proposed solutions, 
surveyed in Section IV, lack generality, being effective only in 
some specific cases. 
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This paper proposes an extension to the SIP protocol called 
ALEX (Address List EXtension) to add effective support of 
multi-address devices. ALEX is simple, requires only minimal 
modifications to SIP user agents and SIP servers, guarantees 
compatibility with ALEX-unaware implementations, and 
works with any application (e.g. voice/video calls, instant 
messaging, etc.). Section II provides a brief overview of SIP in 
order to lay the basis for the discussion in Section III on the 
inadequacy of SIP when it comes to multi-address devices. 
Section IV presents existing approaches to multi-address 
device support with SIP and highlights their shortcomings. 
Section V describes the proposed SIP extension in detail 
highlighting its main features and strengths. Conclusions are 
drawn in Section VI that also outlines further work directions. 

II. SIP 

The Session Initiation Protocol (SIP) is an application-level 
signalling protocol that aims at establishing, modifying and 
terminating a communication between peers. This protocol 
provides a mechanism to locate the other peer, negotiate 
capabilities, and start an application-dependent (voice, video, 
shared whiteboard, messaging, and more) session. The protocol 
encompasses a number of entities interacting with each other: a 
User Agent Client (UAC) sending request messages and 
processing the corresponding responses, a User Agent Server 
(UAS) responsible for processing incoming request messages 
and generating related responses, and a set of intermediate 
servers. Although SIP UAs may communicate directly in order 
to establish a connection without the presence of any 
intermediate nodes, SIP servers make the signalling process 
more flexible and allow simpler UA implementation. 

SIP resources, such as users, mailboxes on a message 
system, etc., are identified by Uniform Resource Identifiers 
(SIP URIs). A special resource is the address-of-record (AOR) 
that has a global scope and represents the “public address” (i.e. 
the unique identifier) of a user (e.g. bob@foo.com). The AOR 
cannot be used ‘as is’ and it has to be mapped to a physical 
resource identifying the actual device (e.g. a SIP user agent 
such as a soft-phone, or a mailbox if the user is offline) 
associated to that user. In general, the AOR can be mapped to 
several resources at the same time because a user can be 
deploying several physical devices (mobile phone, office 
phone, etc.).  



Communications between entities rely on SIP messages, 
text-based messages that are carried within a TCP/UDP 
session. Among the most important information contained in 
SIP messages (and relevant to this work), the contact  field 
contains a SIP URI that uniquely identifies a physical resource 
associated to the user that generated the message. Often, the 
contact  field contains a SIP UA identifier consisting of a 
user name and a fully qualified domain name (FQDN) or a 
network address, e.g. bob@bobpc.foo.com or bob@1.2.3.4. 
The deployment of a network address within the contact  
field is very common as it offers a very simple method to 
generate a unique identifier. However, it should be kept in 
mind that the sole purpose of such address is the creation of a 
unique identifier and (in principle) it should not have any 
relationship with the IP address from which the SIP message is 
arriving or the IP address to which a response should be sent.  

Another relevant part of the SIP header is the via  field that 
specifies the address of each SIP node that forwards the 
message. This field provides a way to track the path followed 
by a SIP request so that the related SIP response can be 
forwarded on the reverse path. A UA has to fill the via  field 
with its address before sending any message. When SIP servers 
forward a message, they update its via  by adding their address 
on the top of the list.   

Among SIP servers, the most important are the SIP 
Registrar and the SIP Proxy. The SIP Registrar server keeps 
track of all the UAs in its domain. A UA registers itself by 
sending a REGISTER request, which contains the AOR of its 
SIP user and one (or more) contact  fields containing the 
URIs of the devices used by the user; this information is stored 
in the Location Service database that is often integrated with 
the Registrar server, although it could be in principle separate.  
The SIP Proxy server forwards incoming SIP messages to a 
destination AOR; this process often requires the interaction 
with the Location Service in order to get the list of contact 
addresses associated to the AOR— i.e., the URI of the devices 
the user is deploying. Routing of SIP messages can be fully 
delegated to Proxy servers if Record Route field is included 
(usually by a proxy), which forces SIP UAs to send SIP 
messages through a SIP proxy even if a shortest path (e.g. UA 
to UA interaction) is available. The Record Route field may be 
essential in some cases, such as when UAs behind NATs are 
able to communicate to specific servers, such as their SIP 
proxy, but are not allowed to generally exchange messages 
with any host. 

Figure 1 shows a sample SIP session: a SIP UA (left) 
wanting to start a media session sends an INVITE message to a 
target SIP UA through two proxies. Only when the called party 
accepts the invitation (the “200 OK”  message) the media 
session begins and data is exchanged directly between the 
peers. Figure 1 shows also two key concepts of SIP: dialogs 
and transactions. A transaction consists of one request and 
corresponding responses. SIP responses are identified by a 
code: the 2xx responses are called final responses and they 
close a transaction. For instance, Figure 1 contains two 
transactions, T1 and T2. Dialogs are relationships between 
UAs initiated when the initiating peer receives a non-failure 
response. Figure 1 shows a dialog created as a result of an 

INVITE request, which is outside of the dialog itself. If a 
Record Route field is not included in the messages, direct 
communication between the two UAs is possible since each 
UA can learn the IP address of its peer from the contact  
field of received SIP messages. For example, in Figure 1 the 
callee UA finds out the address of the caller UA from the URI 
in contact  field of the INVITE request, while the caller UA 
devises the peer UA address from the URI in the contact  
field of the “200 OK” response.   
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Figure 1 Media session establishment through SIP INVITE message. 

III. M OTIVATIONS 

When direct interaction should take place between multi-
address SIP entities, each of them is faced with two problems: 
(i) obtaining the complete list of network addresses of the 
remote device and (ii ) selecting the “best” source/destination 
address pair to be used for the dialog. The reminder of this 
section presents existing solutions to these problems in general 
and discusses why these are not suitable to the case of SIP 
devices. 

A. Multi-address devices in a client-server environment  

With common client-server protocols (such as HTTP, POP, 
SMTP, etc.), a list of network addresses can be easily 
associated to a host by assigning the host a unique name, such 
as a Fully Qualified Domain Name (FQDN) and storing several 
records (e.g. A and AAAA records) in the DNS associated to 
the FQDN. Referring to such unique name when 
communicating with the host indicates that any address 
contained in the associated DNS records is equivalent for the 
purposes of the communication.  

A client that wants to contact the multi-address host obtains 
from the DNS all the records associated to that name, getting to 
know the capabilities of the server in terms of address families 
(IPv4, IPv6) and network addresses. At this point the client has 



to solve the second problem previously listed: which 
source/destination address pair should be the best to use. At 
first sight the solution seems straightforward: if both devices 
are IPv6-capable the “best” address family is IPv6; in case of 
failure, or if one of the hosts is IPv4 only, then IPv4 addresses 
should be used. Moreover, the choice among addresses of the 
same family is usually done statically in IPv4 (often the first 
IPv4 address returned is used), and dynamically in IPv6 
through the Source Address Selection [6] mechanism. 
However, in general the scenario might be complicated since 
some of the addresses of one host might not be reachable by 
the other or might be associated to “long” routes.  

B. Multi-address devices in a SIP environment 

The SIP protocol is not a simple client-server protocol. 
Although some of its functions are based on the classical 
client-server paradigm (e.g. the SIP REGISTER message 
which is used to register a SIP UA within its SIP server), many 
others are not. For instance, a SIP INVITE message usually 
travels from a UA to its SIP server, gets forwarded to the SIP 
server of the target domain, and finally to the target UA; in 
addition, the response message can be sent directly from the 
contacted UA to the session originator. 

Intermediate devices possibly participating into a SIP 
transaction (often an INVITE message involves two UAs and 
two proxy servers) result in a much more complicated 
“capability negotiation” with regard to network addresses. For 
instance, the message between the originating UA and its SIP 
server can be sent through IPv6 if both are supporting this 
protocol, but the message coming back from the called UA 
may be using IPv4 and yet the originating client must be able 
to understand that this message is part of the dialog that was 
started in IPv6. Moreover, the destination of some SIP 
messages (e.g. INVITE, but not REGISTER) is specified in 
terms of the called user’s SIP AOR, which can be associated to 
several devices. Therefore an additional resolution step1 is 
needed to locate the set of UAs associated to a SIP user. Then, 
for each UA, the list of its network addresses must be obtained 
and one chosen among them for the session. 

In order to better define the problem, the reminder of this 
section analyzes the possible interactions between SIP devices, 
pointing out the most problematic issues.  

a) Messages from SIP UAs to SIP servers 
Messages from SIP UAs to SIP servers (e.g. the first step 

for an INVITE message) do not present any new problem as 
the interaction between these devices follows the typical client-
server paradigm. The SIP UA obtains the address list of the SIP 
server through a set of DNS queries that involve NAPTR and 
SRV records, in addition to the well-known A and AAAA 
ones. Hence, existing methods to select the best 
source/destination address pair can be applied. It is important 
to point out that an address possibly specified in the contact  
field of SIP messages (e.g. contact: bob@1.2.3.4 ) 
might be different from the source address in the IP packet 
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carrying the message to the server (e.g. 
2001:760:400::1 ), according to the OSI layering model. 

b) Messages from a SIP server to another SIP server 
Messages from a SIP server to another SIP server (e.g. the 

second step for an INVITE message, when the proxy server in 
the caller’s domain forwards it to the proxy server in the 
callee’s domain) are also based on a typical client-server 
paradigm; hence addresses are handled as in the previous case. 

 

c) Messages from a SIP server to a SIP UA 
Messages from a SIP server to a SIP UA (e.g. the third step 

for an INVITE message, when the proxy server in the callee’s 
domain delivers the message to the called UA) are more critical 
since the association of a list of addresses to a UA cannot be 
effectively done through a FQDN and the DNS for a number of 
reasons. First, it is not uncommon that a device running a UA 
is not registered in a DNS server. Second, even if it is 
registered in the DNS, keeping DNS entries updated is difficult 
when addresses change rather often, which is common in 
IPv6.2 In principle the SIP Registrar server could be used to 
store the list of network addresses associated to each UA, but 
SIP does not specify a way to do so. In fact, multiple contacts 
can be associated within the SIP Registrar to an AOR, but they 
are viewed as distinct UAs working for the same user, i.e., 
messages may be duplicated and sent concurrently to all listed 
UAs. Instead when two addresses are associated to the same 
UA only one must be used to transfer messages to the UA. 

In any case, knowledge of the UA address list is not 
essential in order to just deliver a SIP message since the contact 
URI previously registered by the UA with the SIP Registrar 
can be used. However, this does not enable the server to make 
the best address choice or to switch to a different address in 
case the one corresponding to the registered URI is no longer 
working (e.g. due to a network failure).  

d) Messages from a SIP UA to another SIP UA 
Responses from a SIP UA to another SIP UA (e.g., the 

“200 OK” message that closes an INVITE transaction) undergo 
the same issues described for the previous case, since reply are 
sent back on the same path of the original message (hence 
using the via  header). Hence, a called UA wanting to start 
another transaction to the calling UA (e.g. a BYE message) can 
rely only on information in the contact  field of the received 
SIP message. However, differently from previous case, the 
approach is not necessarily effective even when just aiming at 
delivering the message (without necessarily aiming at 
optimising delivery). If, for example, the contact  field 
contains a URI formed from an IPv6 address and the called 
device does not support IPv6, a direct communication cannot 
take place, even if the calling UA is a dual-stack device — 
which is unknown by the callee.  

Message delivery can be ensured by including a Record 
Route field which forces all messages to follow the same path 
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address of a network interface, when the lifetime of the “privacy address” [7] 
expires, or when a host changes its location. 



— through proxies — and it does not allow direct peer-to-peer 
interaction. However, this solution imposes an additional 
overhead on the proxy servers, which may not be negligible 
especially with applications (e.g. instant messaging) that 
exchange SIP messages periodically. Moreover, while 
providing a solution for delivering SIP messages, this approach 
does not solve the problem for applications that require direct 
UA-to-UA interaction (e.g. voice sessions), thus requiring each 
UA to know the network addresses of the other one. 

It can be concluded that an extension to SIP is required to 
exchange an address list between SIP entities running on multi-
address devices, such as dual-stack and multi-homed hosts, in 
order to efficiently enable dialog setup.  

IV. RELATED WORK 

The problem of supporting multi-address devices in SIP has 
not been explored in depth in the literature. The reason is that 
mostly IPv4-only hosts are currently being used, which rarely 
have multiple addresses. Additionally, inadequate support of 
multi-address IPv4 devices most likely results simply in under-
optimized SIP message transfer. However, when dual-stack 
IPv4-IPv6 machines are deployed — which is going to become 
more widespread — SIP UAs may not be able to successfully 
start a dialog, as discussed in the previous section.  

To the best of our knowledge, the only existing approach 
for supporting multi-address devices in a dual-stack scenario 
stems from the combination of ICE and ANAT. ICE 
(Interactive Connectivity Establishment) [2] allows listing the 
several network addresses associated to a UA, although they 
must belong to the same address family. ANAT (Alternative 
Network Address Types) [3][4] overcomes this limitation by 
extending ICE to support dual-stack clients. 

The ICE-ANAT combination is interesting as it supports 
also “virtual” network addresses, such as the network address 
dynamically substituted by a NAT (Network Address 
Translator) into packets generated by or addressed to a host. 
However, the ICE-ANAT solution inserts additional addressing 
information in the SDP (Session Description Protocol) portion 
of a SIP message, making this solution suitable only for media 
flow establishment. In other words, this approach is not 
applicable to a range of SIP-based applications that do not 
deploy media flows, among which, for example, instant 
messaging. Other ANAT open issues, described in [4], are 
related to situations in which one of the UAs does not support 
ANAT. In addition, the ICE-ANAT solution has a high degree 
of complexity. 

The solution proposed in the next section aims at 
overcoming the issues of the ICE-ANAT, i.e., (i) providing 
general (not only for media flow-based applications) support 
for direct communication between UAs running on multi-
address devices (ii ) with full backward compatibility. 

V. THE ADDRESS LIST EXTENSION (ALEX)   

The solution to the issues discussed in Section III is 
presented in the following and is based on a SIP extension that 
encompasses an information exchange to devise network layer 
identification of a UA, rather than deriving it from the URI 

communicated within the contact  field. The SIP protocol 
has been designed to be flexible and it supports ad-hoc 
extensions that must be negotiated during the first message 
exchange in a session between UAs. If both UAs support the 
proposed extension then the added information can be used to 
devise the best source/destination address pair for direct 
communications between the UAs. The proposed extension is 
beneficial when supported by UAs, and assures interoperation 
of dual-stack UAs with IPv4-only UAs and proxies. 

ALEX aims at optimising direct peering between two UAs 
and is applicable only to SIP dialogs, provided that a SIP proxy 
does not insert the Record Route field; ALEX related 
information is included in SIP messages setting up the dialog. 
ALEX is not suitable outside dialogs because in this case 
messages are expected to be exchanged through proxies, either 
because the data exchange is expected to be very small  (hence 
the dialog creation inserts an unnecessary overhead), or 
because messages might be delivered to multiple destinations 
(hence proxies are the only entities that can perform a message 
forking); hence the address list of the other peer is useless. 

A. Address field format 

ALEX (Address List EXtension) requires the definition of 
an address  field whose specification in Backus-Naur Form 
(BNF) [RFC2234] is shown in Figure 2. The address  field is 
present (one ore more times) in every request message that 
creates a dialog with another peer to provide it with network 
level information. A UA supporting ALEX builds an 
address  field for each (logical) interface it is listening to. For 
instance, a dual-stack UA includes at least two address  
fields in every message, one for its IPv4 address and one for its 
IPv6 address. A require  field with value ALEX precedes the 
sequence of address  fields to indicate that ALEX is 
required. 

ADDRESS EQUAL network-address \  
   [; transport-address ] ; c-p-q [; expire-t] 
network-address = 1*64(alphanum) 
transport-address = “port” EQUAL ( alex-port ) 
c-p-q = "q" EQUAL qvalue 
qvalue = ( "0" [ "." 0*3DIGIT ] )  \ 
     / ( "1" [ "." 0*3("0") ] ) 
alex-port = 1*8[DIGIT] 
expire-t = “expires” EQUAL time-exp 
time-exp = 1*8[DIGIT] 

Figure 2 address:  field specification. 

The address  field contains a network address, a q parameter 
that defines the “quality” of the address within as a number 
between 0 and 1 (higher numbers means higher preferences; 
e.g. IPv6 addresses should have higher preference, leaving 
IPv4 addresses as a “fallback” solution), an optional expires  
parameter that defines a time validity for the corresponding 
network address, and an optional port  parameter to 
communicate the SIP port in case it differs from the default 
value. 

Figure 3 shows a SIP INVITE  message with ALEX extension. 
A called UA supporting ALEX responds with a SIP 200 OK  
message that includes the list of its addresses — in a sequence 
of address  fields. Otherwise, the callee refuses the 



connection and forces the caller to retry through an INVITE  
message without ALEX. The choice of bounding the 
deployment of ALEX to the require  field, and consequently 
imposing the above behaviour, stems the experimental nature 
of ALEX. In the future, ALEX support might be requested 
through the support  field instead, which does not force to 
abort the dialog in case the called party does not support this 
extension. 

INVITE sip:bob@biloxi.com SIP/2.0    
   To: Bob <sip:bob@biloxi.com> 
   From: Alice <sip:alice@atl.com> 
   Contact: <sip:alice@192.168.225.1> 
   Require: ALEX 
   Address: 192.168.225.1 ; q=0.1 ; expires=600 
   Address: 2001:760:250:::1 ; q=0.9 

Figure 3 SIP request from a UA with ALEX extension 

B. Deployment principles  

An ALEX capable UA must bind its SIP stack to every 
network address available on the host. Both local and public 
addresses suitable for communicating with other hosts are 
included into its address list. 

A UAC initiates a dialog with a UAS based on the URI of 
the UAS or of its user (i.e., an AOR). The UAC sends the 
initiating message (e.g., an INVITE  message or a 
SUBSCRIBE) to its SIP proxy server and the SIP infrastructure 
(i.e., location service, SIP proxies, SIP redirectors) delivers 
such message to the UAS. A UAC supporting ALEX includes 
the extension in such first message, as exemplified by the 
SUBSCRIBE message in Figure 4. A UAS supporting ALEX 
extracts from received messages the information in the 
address  fields (see the right column of the SIP Dialog 
Address Table of the called UA in Figure 4). When preparing a 
reply message, the UAS includes one or more address  fields 
containing the list of its addresses, as exemplified by the first 
200 OK  message in Figure 4. Upon reception of the 200 OK  
message the caller UA extracts and stores the addresses carried 
by ALEX, as shown by its SIP Dialog Address Table in Figure 
4. 

Each of the two UAs involved in a dialog must select the 
address pair to be used for direct communication with the peer 
among all the pairs resulting from the combinations of 
compatible local addresses and remote peer addresses learned 
through ALEX. The first step of this selection consists in 
identifying which of the possible pairs do actually enable 
successful packet exchanges. To this purpose, UAs carry out an 
Address Validation Process, as shown in Figure 4. The q 
parameter associated to each address within ALEX extensions 
is used to select a validated address pair when more than one is 
available. The selected address pair is used in the direct 
message exchanges within the dialog, as shown in the bottom 
part of Figure 4, possibly including media packets. 

The Address Validation Process is based on using the 
address pair to be validated for exchanging IP packets that 
carry a new SIP messages called VALIDATE. For the sake of 
brevity, the mechanisms and protocols involved in the address 

validation process are not described here and will be included 
in future publications. 
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Figure 4 Example of message exchange between UAs with ALEX support. 
Only the relevant messages are shown. 

 

Remote peer addresses are cached for later communications 
with the same UA. A UA must not consider and store remote 
peer addresses that could not be validated, i.e., cannot be used 
for communication with the remote peer. For instance, an IPv6-
only UA will keep only entries of the SIP dialog address table 
marked as IPv6 addresses. 

When a new dialog, like the SUBSCRIBE in Figure 4, is 
negotiated between the same UAs, they compare the received 
address list with the previously stored one. Pairs not changed 
and not expired are used without need for validation, while 
new pairs are to undergo the address validation process.  

C. Backward compatibility  

While an ALEX-aware UA uses the URI in the contact  
field only for identifying its remote peer, a traditional UA uses 
the information contained in this field for establishing a direct 
communication with its remote peer. For this reason, an 
ALEX-compliant UA shall anyway fill out the contact  field 
as it is done by ALEX unaware devices, which is stored in the 
registar Proxy and it is used by all SIP devices (ALEX-aware 
or not). When using an address in the contact  field it shall 
be IPv4 for three reasons: (i) in a dual-stack environment, IPv4 
is understood by every UA, (ii ) an IPv6 addresses size could 
create problems to some IPv4-only UAs (due to 
implementation-related bugs), and (iii ) proxies could be IPv4 
only. 



VI. CONCLUSIONS AND FUTURE WORKS 

This paper presents the Address List EXtension (ALEX) to 
the Session Initiation Protocol (SIP) that adds effective support 
to direct communications between User Agents (UAs) running 
on hosts with multiple addresses, such as dual-stack hosts or 
multi-homed IPv6 hosts. ALEX enables IPv6 transport to be 
used for SIP messages whenever possible, without 
compromising compatibility with ALEX-unaware UAs. Future 
work is required to quantitatively assess the benefits of ALEX 
in a generic multi-homed host scenario, where there could be 
hosts with many interfaces and dual-stack capabilities. 
Moreover, ALEX-based, lightweight, and low latency support 
for NAT (network address translator) and firewall traversal 
should be developed. Finally, the usage of ALEX for 
optimizing the message exchange between UAs and SIP 
proxies will be investigated. 
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