
Using XML for Efficient and Modular Packet
Processing

M. Baldi and F. Risso
Politecnico di Torino, Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
{mario.baldi, fulvio.risso}@polito.it

Abstract—XML is a technology that has been widely adopted for
data exchange, particularly in web and e-commerce applications.
This paper proposes the use of XML also for network packet
processing. It presents some XML-based languages for data
exchange and it identifies some examples in which XML can
enable a new, modular design of network applications while
maintaining the required high processing efficiency. These
technologies have been implemented in the NetBee library, which
provides an excellent way to give an insight of the performance
obtainable with the proposed approach.

Keywords: Network Packet Processing, Modular Packet
Processing, XML, NetPDL, PDML, PSML.

I. INTRODUCTION
While in the past applications used to work mostly alone, the

Internet has changed this paradigm and nowadays applications
are day after day more network-centric. In this respect,
applications tend to find more convenient focusing on a
specific problem, delegating other secondary tasks (which can
be seen as “non-mission critical”) to other applications. The
increased modularity of the applications brings to high
processing efficiency (everyone does what it knows best) and it
is possible thanks to the extremely fast and efficient data
transfers provided by nowadays networks.

This modular approach currently does not exist in network
applications. For instance, we can envision two categories of
network applications. The first category includes applications
(such as a web client and a web server) that use the network as
a simple “pipe” for transferring data. These applications
send/receive data through some form of high-level interface
(e.g. TCP/IP sockets) and are not interested in the internals of
the network itself. The second category (the one we are
interested in) includes applications that have to deal directly
with network packets and must have a deep knowledge of
network mechanisms. As examples, we can cite firewalls,
network address translators, intrusion detectors, packet sniffers,
network monitors, and more.

Modular processing can bring a valuable advantage to the
latter type of applications because it avoids wasting resources
in dealing with low-level details instead of concentrating on
their “core business”. For instance, a company that creates a
firewall should concentrate its efforts (e.g. lines of code and
time of its programmers) in checking whether a packet contains
malicious code instead of spending resources in locating the
TCP payload. This should be delegated to an external (and,
hopefully, optimized) component. This currently does not

happen and, right now packet processing is still implemented
within the application by application-specific code.

A clear example of the benefits of modular processing can
be seen in the next figures. Figure 1 shows a fragment of code
that checks if an Ethernet packet contains a TCP payload. In
this first example, the code checks if the Ethernet frame
contains an IPv4 packet, and then if the IPv4 packet contains a
TCP payload.

if ((packet[12]==0x800) && (packet[23]==6))

/* TCP packet */

else

/* Non TCP packet */
Figure 1. Filtering TCP packets on Ethernet/IP.

 In case the application wants to support also IPv6, the code
must be modified as shown in Figure 2 in order to take into
account also the additional possible encapsulation.

if (((packet[12]==0x800) && (packet[23]==6) ||

((packet[12]==0x86dd) && (packet[20]==6)))

/* TCP packet */

else

/* Non TCP packet */
Figure 2. Filtering TCP packets on Ethernet/IPv4-IPv6.

 Obviously, this code may become a nightmare if the packet
can use any possible link layer (Ethernet, etc) or if the IPv4-6
headers have optional parts because of the very large number of
controls needed to locate if the packet contains a TCP payload.

This example demonstrates how packet processing can be
complicated, prone to errors, and it can be of little interest for
programmers that want to perform some high-level processing
to the packet. They should be very happy to write a fragment of
code like the one shown in Figure 3, in which the low-level
packet processing is delegated to another entity, such as an
external library.

if (Packet.Contains(“tcp”))

/* TCP packet */

else

/* Non TCP packet */
Figure 3. Fragment of code that relies on some external module to filter

packets containing a TCP payload.

An example of modularity applied to packet processing can
be seen in Figure 4. A very large set of applications can take
advantages from a set of optimized components (e.g. a packet
decoder or a packet filter), implemented in external modules.

NetPDL
Protocol

database

NAT Firewall IDSTraffic
Monitor

L4/7
Switches

Access
List

Applications

L3
forwarding

Packet
Capture

Packet
Filter

Packet
Decoder

Stream
Reassembler

Traffic
statistics

Packet
Fields

Extractor

. . .

. . .

Components for modular packet processing

S t a n d a r d D a t a E x c h a n g e F o r m a t s

Protocol
Visualizers

Figure 4. Modular processing in packet-based applications.

However, one of the requirements of modular processing is
the necessity of well-defined data interfaces between
applications in order to permit data exchange. In this respect,
the eXtensible Markup Language (XML) is becoming the
preferred way for exchanging structured data between different
applications and different organizations. Furthermore, several
tools, both stand-alone programs and libraries, exist for dealing
with XML files and can be leveraged for data handling. In this
way, programmers have to deal only with the details of their
XML-based language because these standard tools
automatically manage a large set of common problems, (e.g.
syntactical correctness). Finally, an XML-derived language can
be easily extended since an XML document can include new
elements (or new attributes of existing elements) being still
backward compatible with previous parsers because of their
capability to ignore unknown tags.

This paper presents a preliminary realization of this vision
and it proposes some new XML-derived languages that help
exchanging data between different applications requiring
packet processing. The basic block for enabling modular packet
processing is a method to uniquely identify each protocol and
each field. In other words, what is sometimes called “IP source
address field”, sometimes “IP source address”, or “ip source”,
or even “IP.source”, must be labeled with a unique name (e.g.
ip.src). Therefore, the first language is the Network
Protocol Description Language (NetPDL), which aims at
describing network protocol headers. Other two languages are
the Packet Description Markup Language (PDML) and Packet
Summary Markup Language (PSML). The first aims at listing
protocols and fields that are contained within a network packet
and their values (e.g. “this packet contains the IP protocol,
which has an ip.src field whose value is 1.2.3.4”) in
order to create a detailed view of the packet. The second allows
creating a brief summary for each packet. These languages can
be used by applications that require a complete decoding of the
packet, such as sniffers or packet-based analyzers who need to
get access to the fields (and their values) contained within
network packets. PDML and PSML can become the preferred
output format for NetPDL-based engines aimed at packet
decoding for later visualization.

Although NetPDL, PDML and PSML are only the first
examples of XML-derived languages deployed in packet
processing, they proved to be extremely useful albeit still
efficient. These languages can be seen as the first step for
creating a set of components that will enable modular packet
processing, as shown in Figure 4.

Particularly, NetPDL is a key component for modular packet
processing. NetPDL is a language that can be used not only as
standard data exchange format, but it can enable the creation of
protocol-independent applications. In fact, current applications
use a proprietary syntax to describe packet headers; moreover,
packet descriptions are often hardwired in their code.
Consequently, supporting a new protocol requires the
intervention of the developers of the specific application. Some
well-known and widely deployed applications, like tcpdump
[3] and Ethereal [4], have even two different protocol
descriptions hardwired in their code: one used when filtering
network packets in real-time, the other one for displaying
packets in a user-friendly fashion. The first description is
simple (and limited) because it is designed for high-speed
operations (filtering). The second one is very comprehensive
and the corresponding packet-processing engine is much
slower than the one using the first description. NetPDL allows
creating applications in a protocol-independent way without
losing in efficiency, because application can read a generic
protocol description according to the NetPDL language and
will automatically be able to process packets containing that
protocol.

This paper is structured as follows. Section II presents the
NetPDL language for describing protocol headers, while
Section III describes the other two XML-based languages for
data exchange, PDML and PSML. Section IV briefly presents
some of the characteristics of the NetBee library, which is a
first example of library for modular packet processing.
Particularly, it implements a packet decoder module (i.e. it
receives the hexadecimal dump of a network packet and
decodes it) using the proposed technologies. Finally, come
conclusive remarks are presented in Section V.

II. NETPDL: DESCRIBING THE PACKET FORMAT
The Network Protocol Description Language (NetPDL) [13]

is a simple, application-independent packet format description
language that it is targeted to an effective description of packet
header format and protocol encapsulation. For instance,
NetPDL is not a protocol specification tool and it does not
support the description of a protocol temporal behavior — e.g.,
a protocol state machine.

Some efforts have been done in the past to create a language
that aims at describing protocol headers [6] [7] [8] [9] [10] [11]
[12]. However, these approaches are usually very limited in
their objectives, often poorly supported, and with poor
performances. NetPDL aims at being a very simple language,
which can be easily extended thanks to its XML-based
structure.

A. The NetPDL Language
Each primitive consists of an element characterized by

several attributes. For instance, a header field is an element, the
field length being an attribute of the element.

Figure 5 shows an excerpt of the NetPDL description of an
Ethernet header. Such header consists of 3 fixed-length fields,
whose length is respectively six, six, and two bytes. As shown
by this example, NetPDL represents each field as an element
containing n bytes. The <nextproto> element contains the
protocol encapsulation description, i.e., it specifies how to
determine the protocol (as indicated by the value of the
<protoref> element) following the current Ethernet header
based on the value of the type-length field (as specified by
the value of the fieldref attribute). Some predefined
protocols (_startproto and _defaultproto) are used
in special cases, such as the “first” protocol of the
encapsulation sequence and the “last resort” protocol to be used
when no suitable protocol description is available for
processing the remaining data of a packet.

<proto name="Ethernet">
<fields>

<fixed name="dst" size="6"/>
<fixed name="src" size="6"/>
<fixed name="type-length" size="2"/>

</fields>

<nextproto>
<switch>

<expr type="int">
<fieldref name="type-length">

</expr>

<case value="2048"><protoref name="IP"/></case>
<case value="2054"><protoref name="ARP"/></case>

</switch>
</nextproto>

</proto>
Figure 5. Excerpt of the NetPDL description of an Ethernet Frame.

The headers defined by the majority of the protocols
currently in use contain a set of fields, which, most often, can
be categorized under six different types. The vast majority of
header fields has a fixed length and is aligned to a byte
boundary, hence the <fixed> element. Less frequently, a
field is composed of a few spare bits, hence <masked>
(identifying the part of a header that contains bit fields) and
<bit> (for a bit field) elements are defined. Other fields, are
characterized by the fact that the length can be determined only
at packet-processing time. These variable-length fields can be
either length-specified (i.e., the length is specified by the value
of another field) or sentinel specified (i.e., a given character or
string indicates the end of the field). For them, the
<variable> element exists.

Due to their widespread presence in packet headers, NetPDL
includes two additional pre-defined field types: the line field
(<line>) — an ASCII string terminated by a carriage return
character — and the padding field (<padding>) — often
used to realign the protocol headers to a 16 or 32 bit boundary.

Although a field is completely characterized by specifying
its length, the number of occurrences, and its position in the
packet, the latter two items are usually not needed because a
field B is usually placed after its preceding field A and the
number of occurrences is usually one. In order to keep the
notation simple, only the length of the field (through the
attribute size) must be always specified. The language
addresses also the description of fields repeated multiple times,
while the position of a field can be specified through the

optional attribute offset. A packet trailer is a typical case in
which this attribute is deployed.

B. Advanced NetPDL Elements
Elements defined previously are often not sufficient; for

example, the header of a protocol as common as IP cannot be
described through the already presented elements. NetPDL
defines also more sophisticated elements for conditional
decoding (e.g. a protocol may have some optional headers,
which may be present depending on the value of some fields),
field loops (a field may be repeated several times depending on
some condition) and storage support (a protocol may need to
store some information for later processing). Finally, an
element that recalls a custom plug-in can be defined for the
cases in which no suitable NetPDL elements are available and
the processing must be done though ad-hoc (native) code. For
example, a well-known protocol such as the DNS contains a set
of structures that aim at saving spaces within the packet by
storing a pointer to a name instead of the complete DNS name.
Defining a NetPDL element that implements this kind of
processing does not seem suitable because no other protocols
rely on this mechanism; hence, custom plug-ins provide an
easier solution. Plug-ins allow processing the packet without
increasing the complexity of the NetPDL language, i.e.
avoiding the definition of new elements of little validity.

C. NetPDL extensions
One of the main characteristics of NetPDL is its

extensibility, i.e. the possibility to add new keywords (that can
be inserted as either attributes of existing NetPDL elements or
new elements) that will be used by some applications for their
purposes. A NetPDL-based engine is required to parse protocol
descriptions based on NetPDL, while it might process only the
extensions relevant to the specific application for which the
engine was designed (e.g., packet filtering). Therefore, a
NetPDL-based engine that does not support new extensions
simply ignores extension specific attributes and elements, thus
operating on a description like the one in Figure 5.

An example of a possible extension is the information
related to the validity of each field; for instance, some fields
allow only a limited set of values, while others (e.g. CRC
fields) must have a precise value. Currently, the first extension
to this language (called NetPDL Visualization Extension [13])
provides information on how a decoded packet should be
displayed. For instance, a 32 bit number representing an IP
address should be displayed in dotted-decimal form, while a 32
bit number representing a CRC should be displayed as a
hexadecimal number.

The NetPDL Visualization Extension allows the definition
of two views: a summary view, which includes the most
important fields to be shown for each packet, and a detailed
view, which includes all the fields of each packet, in full detail.
These extensions defines a set of elements and attributes that
are used within a visualization template. Each protocol and
protocol fields can contain a link to the proper visualization
template through the attributes showtemplate and
showsumtemplate, as shown in Figure 6.

The most important attributes contained in the visualization
template are showtype, showgrp, and showsep, which

determine respectively the format (hexadecimal, decimal, ascii,
or binary) of each byte, how bytes must be grouped, and the
separator string between the groups. For example, fields MAC
Source and MAC Destination in Figure 6 specify that the field
should be shown using the EthMAC template. This template
displays a field by splitting its value in two parts (of three bytes
each, as specified by the showgrp attribute) of hexadecimal
numbers (showtype attribute) separated by a “-” sign
(showsep attribute). The final result looks like 000800-
AB34F9. Figure 6 show also the visualization template applied
to the whole protocol in order to create the summary view. Each
Ethernet frame will be summarized with the string “Eth:”
followed by the source MAC address, the string “=>” and the
destination MAC address, producing a string looking like:

Eth: 0001C7-B75007 => 000629-393D7E

<proto name="Ethernet" longname="Ethernet 802.3“
showsumtemplate="eth">

<fields>
<fixed name="dst" longname="MAC Destination" size="6"

showtemplate="EthMAC"/>
<fixed name="src" longname="MAC Source" size="6"

showtemplate="EthMAC"/>
<fixed name="type-length" longname="Ethertype - Length" size="2“

showtemplate="FieldHex"/>
</fields>
...

</proto>
...
<netpdlshow>

<showtemplate name="FieldHex" showtype="hex"/>
<showtemplate name="EthMAC" showtype="hex" showgrp="3" showsep="-"/>

<showsumtemplate name="ethernet">
<section name="next"/>
<text value="Eth: "/>
<pdmlfield name="src" attrib="show"/>
<text value=" => "/>
<pdmlfield name="dst" attrib="show"/>

</showsumtemplate>
</netpdlshow>
Figure 6. Example of visualization extension for an Ethernet frame.

D. Performance evaluation
Most of the critics to the NetPDL language focus on its

supposed performance penalty against a tool that contains the
protocol definition hardwired in its code. Therefore, we run
some test and we compared the Packet Decoder module of the
NetBee library [2], which is a first implementation of a packet
decoder entirely based on the NetPDL language, against the
Tethereal [4] packet sniffer, which is the no-GUI version of the
well-known Ethereal. Tests, executed on a P4 - 2.4 GHz PC,
are based on the analysis of several packet dumps, and the
average processing time per packet is shown in TABLE I.

Results show that the performance obtained by NetBee and
Tethereal are very similar, respectively 75 µs and 66 µs of
processing time per packet. In case only the most important
information about each field are required (basically the field
name, its position in the packet dump, and its size), NetBee
further decreases the processing time from 75 µs/packet to 39
µs/packet. This feature is not available in Tethereal.

Although these results provide only a general indication of
the performance obtainable from NetPDL-based tools, they
clearly demonstrate that the NetPDL language itself does not
introduce performance penalizations; performance fully
depends on the quality of the tool deploying this language.

TABLE I PERFORMANCE COMPARISON BETWEEN NATIVE CODE AND
NETPDL-BASED ENGINE IMPLEMENTATION

 Tool name Results
Tethereal (native code) 66 µs/pkt Complete packet

decoding NetBee 75 µs/pkt

Partial packet decoding NetBee 39 µs/pkt

III. STANDARD DATA EXCHANGE FORMATS FOR DECODED
PACKETS

Even though NetPDL-based engines can be implemented for
performing any kind of packet-based processing, a major
application field is packet decoding. As a matter of fact, the
first implementation of a NetPDL-based engine (available in
the NetBee library) has been created for this task.
Consequently, an interchange format has been specified for the
output of a packet-decoding engine, which is based on PDML
and PSML. In principle these languages are not related to
NetPDL (besides all being based on XML); however, a
NetPDL-based engine easily creates these documents because
of the similarity of some elements and attributes in
PDML/PSML and NetPDL visualization templates.

PDML and PSML files can be integrated with an XSL
(eXtensible Stylesheet Language) file to provide a customized
view of the packets. For instance, Analyzer 3.0 [1] (an open-
source sniffer created by the Authors) uses a simple set of
HTML/Javascript and XSL files to display a network trace into
a web browser, with the same look and feel of a native, custom
developed interface.

A. Packet Details Markup Language
The Packet Details Markup Language (PDML) [13] is a

simple language to express information related to decoded
packets (e.g. the protocols, all the field names and their values,
etc.).

<pcdml>
<packet>
<proto name="geninfo" pos="1" size="60">
<field name="num" pos="1" size="60" value="1"/>
<field name="len" pos="1" size="60" value="60"/>
<field name="clen" pos="1" size="60" value="60"/>
<field name="timestamp" pos="1" size="60"

value="982071507.115641"/>
</proto>
<proto name="Ethernet" pos="1" size="14">
<field name="dst" pos="1" size="6" value="000629393D7E"/>
<field name="src" pos="7" size="6" value="0001C7B75007"/>
<field name="type-length" pos="13" size="2" value="0800"/>

</proto>
</packet>

</pdml>
Figure 7. Example of a PDML document.

The Ethernet frame description in Figure 7 provides an
example. A root <pdml> tag delimits the PDML document,
which is a collection of packets (delimited by the <packet>
tag), which includes a set of protocols (<proto> tag). Each
protocol contains the list of fields (<field> tag) that have
been identified in its header; the most important information
for each field (name, position, size and value) are stored as
attributes. A dummy protocol, geninfo, is used for
information about the whole packet (ordinal position in a
packet sequence, length of the packet, number of bytes actually
captured, timestamp).

PDML defines also several attributes aimed at improving the
visualization of each field. As an example, Figure 8 presents
the same fragment of Figure 7, enriched with visualization
attributes. The attribute show holds the field value in a
“printable form” (e.g. 000629-393D7E), because the “hex
form” contained in the value attribute (e.g.
000629393D7E) may be difficult to understand, particularly
in case of fields, such as IP addresses, that are always shown in
a different format. The attribute showname holds the
field/protocol name in a readable, user-friendly form (e.g.
“MAC Source” rather than “src”). The attribute showmap
contains a string that has been inferred (mapped) from the field
value. This attribute can be used for example in case of the
MAC address to store the Network Interface Card
manufacturer that can be inferred by the first three bytes of the
address. The content of this attribute depends on the result of
the <showmap> element that is present in the NetPDL
visualization template related to this field. The attribute
showdtl holds a string that can be possibly generated
according to the value of the field. In the example in Figure 8 it
is used to contain a MAC address properly formatted for
visualization, its type (i.e., unicast, multicast or broadcast), and
vendor information. As the previous attribute, its content
depends on the result of the evaluation of the <showdtl>
element of a NetPDL visualization template.

<pdml>
<packet>

<proto name="geninfo" pos="1" showname="General Info" size="60">
<field name="num" pos="1" show="1" showname="Number"

size="60" value="1"/>
<field name="len" pos="1" show="60" showname="Packet Length"

size="60" value="60"/>
<field name="clen" pos="1" show="60" showname="Captured Length"

size="60" value="60"/>
<field name="timestamp" pos="1" show="14:38:27.115641"

showname="Capture Time" size="60"
value="982071507.115641"/>

</proto>

<proto name="Ethernet" pos="1" showname="Ethernet" size="14">
<field name="dst" pos="1" show="000629-393D7E"

showdtl="000629-393D7E Unicast address (Vendor IBM)"
showmap="IBM" showname="MAC Destination"
size="6" value="000629393D7E"/>

<field name="src" pos="7" show="0001C7-B75007"
showdtl="0001C7-B75007 Unicast address (Vendor Xircom)"
showmap="Xircom" showname="MAC Source"
size="6" value="0001C7B75007"/>

<field name="type-length" pos="13" show="0x0800"
showname="Ethertype - Length" size="2" value="0800"/>

</proto>
</packet>

</pdml>
Figure 8. Example of a PDML document, with visualization attributes.

B. Packet Summary Markup Language
The Packet Summary Markup Language (PSML) [13] can

be used to create the summary view of a sequence of packets.
This language is even simpler than PDML and it defines a set
of primitives for displaying the most important data about the
packet within different sections (e.g. “link layer”, “network
layer”, etc.), which are completely customizable.

An example of a PSML file is shown in Figure 9. It includes
a section that defines the structure of each packet summary (i.e.
the number of sections and their name), plus a set of
<packet> elements containing the summary related to a
given packet.

<psml>
<structure>

<section>N.</section>
<section>Time</section>
<section>Data Link</section>
<section>Network</section>
<section>Application</section>

</structure>
<packet>

<section>1</section>
<section>16:35:14.985050</section>
<section>Eth: 00E01E-EC3C84 => 0080C7-CB439A</section>
<section>IP: 192.168.10.2 => 130.192.16.81 (Len 60)</section>
<section>ICMP Echo Reply</section>

</packet>
</psml>

Figure 9. Example of a PSML document.

C. Performance Evaluation
PDML/PSML languages are implemented in the NetBee

library and in the most recent version of Ethereal and Tethereal
and has been extremely appreciated by many users that need to
parse packet dump with simple scripts (e.g. Phyton). In fact, the
XML-based structure is perhaps not very efficient from the
disk space occupancy, but it is very efficient in locating the
required information with a limited amount of lines of code
thanks to the many existing (and free) XML parsers, which are
very common nowadays. For instance, a PDML file can be
more than 50 times larger than the corresponding binary packet
dump (which does not have any information referring to the
semantic of protocol fields), while a PSML file containing only
the packet summary can be approximately two times larger.
For comparison, a plain text file containing the packet
summary can be as large as the original packet dump, which
brings to the conclusion that the XML format, in itself, can
double the space required to contain the result.

From the performance evaluation standpoint, the NetBee
library has been proved faster than the Tethereal code in
generating PSML/PDML files, as shown in TABLE II, and the
packet can be completely decoded and dumped on disk in
approximately 0.6 ms.

TABLE II PERFORMANCE FOR DECODING A PACKET AND CREATING
THE PDML/PSML OUTPUT

 Tool name Results
Tethereal 1077 µs/pkt Packet decoding and

PDML/PSML creation NetBee 648 µs/pkt

IV. TOWARD MODULAR PACKET PROCESSING
The NetBee library provides a first implementation of a set

of modules for modular packet processing and it is currently
used by the Analyzer 3.0 sniffer. It implements the three
languages presented in this paper and it includes a first module
for packet decoding, a second for field formatting (i.e.
transforming an hex dump into a printable IP address and vice
versa) and a third experimental module for packet filtering.
This library exports a very clean interface that allows
programmers to forget low-level packet processing details. For
instance, Figure 10 shows the few lines of code required for
decoding and printing a portion of its content.

Although this library is still in the first stage, it includes a
protocol database of 64 protocols, mostly related to the TCP/IP
suite, including Ethernet, Token Ring, VLAN, IP, IPv6, TCP,
UDP, DHCP, DNS, RIP, OSPF, BGP, PIM. This library is

implemented as a 500 Kbyte Dynamic Link Library (DLL) for
Windows and it has been released under a BSD-style license.

This library demonstrates the feasibility, the efficiency, and
the simplicity (from the high-level programs perspective) of the
proposed modular approach for network packet processing.

while (1)
{
struct _nbPDMLPacket *PDMLPacket;
struct _nbPDMLProto *ProtocolItem;

// Read packet from file or network
Res= PacketSource->Read(&PacketHeader, &PacketData);

if (Res == nbFAILURE)
break;

// Decode packet
Decoder->DecodePacket(DataLinkCode, PacketCounter,

PacketHeader, PacketData);

// Get the current decoded packet
PDMLReader->GetCurrentPacket(&PDMLPacket);

// Print some global information about the packet
printf("Packet number %d\n", PDMLPacket->Number);
printf("Total lenght= %d\n", PDMLPacket->Length);

// Retrieve the 1st protocol contained in the packet
ProtocolItem= PDMLPacket->FirstProto;

// Scan the current packet and print on screen the most
// relevant data related to each proto contained in it
while(ProtocolItem)
{

printf ("Protocol %s: size %d, offset %d\n",
ProtocolItem->LongName, ProtocolItem->Size,
ProtocolItem->Position);

ProtocolItem= ProtocolItem->NextProto;
}

}
Figure 10. Sample code using the NetBee library: decoding and printing the

details of a packet.

V. CONCLUSIONS
This paper contains three important contributions. First, it

proposes some a new form of modularity applied to packet
processing. Second, it defines some new languages that can be
used as standard data exchange formats between the
applications that are based on packet processing. Third, it
demonstrates, through the creation of the NetBee library, that
the proposed approach is feasible, efficient, and it can
potentially bring tremendous advantages to a large set of
network applications. In fact, even though packet processing is
common to a large number of applications, at present no
solution exists for delegating this function to a set of optimized
components unless some limited examples (such as packet
filtering through WinPcap / libpcap).

NetPDL can lead to the creation of very efficient programs
that are not limited to a small set of network protocols. For
instance, if the user wants to support a new network protocol
(e.g. IPv6) or include new protocol features, it can add its
description to the NetPDL database. Since NetPDL files can be
parsed at run-time, there is not even the necessity to restart the
application. For instance, this is the preferred behavior of the
NetBee library (and Analyzer 3.0, which uses this library),

although some other tools do exist that use NetPDL to create C
code, which has to be recompiled. In addiction, instead of
extending the NetPDL database, the user could even think
about creating a centralized repository on the Internet where
users can download the newest protocol database and enable
immediate support of new protocols.

PDML and PSML languages can be very well used as a
standard formats for packet-related data exchange. Albeit
simple, they have been proved extremely useful for packet
processing and they have been implemented in several tools
outside our research group.

Finally, the NetBee library is a modular, efficient library that
provides an insight of the possibility of modular packet
processing. This library has been implemented in order to
demonstrate the feasibility (and the efficiency) of the proposed
solutions and it supports packet decoding and an experimental
form of packet filtering.

Future work will focus on improving and extending the
characteristics of the NetPDL language, defining new exchange
data format, and implementing new processing modules in the
NetBee library. Comments and contributors are welcome.

REFERENCES
[1] Computer Networks Group (NetGroup) at Politecnico di Torino,

Analyzer 3.0, available at http://analyzer.polito.it/30alpha/, March 2003.
[2] Computer Networks Group (NetGroup) at Politecnico di Torino The

NetBee Library, available at http://www.nbee.org/, August 2004.
[3] Tcpdump, a public domain sniffer. Available at

http://www.tcpdump.org.
[4] Ethereal, a public-domain sniffer. Available at http://www.ethereal.com.
[5] V. Jacobson, C. Leres and S. McCanne, libpcap, Lawrence Berkeley

Laboratory, Berkeley, CA. Initial public release June 1994. Available
now at http://www.tcpdump.org/.

[6] Computer Networks Group (NetGroup) at Politecnico di Torino,
Analyzer, available at http://analyzer.polito.it, March 1999.

[7] Surasak Sanguanpong and Ekapol Rojratanavichai, Syntax Directed,
Definition Supported Universal Protocol Analyzer, Electrical
Engineering Conference (EECON), Kasetsart University, Bangkok,
December 1999. Available at http://anreg.cpe.ku.ac.th/pub/protocol.pdf
(in Thai).

[8] Laurent Riesterer, Generator and Analyzer System for Protocols
(GASP), March 2000, Available at http://laurent.riesterer.free.fr/gasp/.

[9] Christian Lorenz, SPY LAN Protocol Analyzer, 1999, available at
http://www.gromeck.de/Spy/.

[10] Solidum (now Integrated Device Technology - IDT), PAX Pattern
Description Language, October 2002, available at
http://www.solidum.com/products/pax_pdl.cfm.

[11] Olivier Dubuisson, ASN.1 - Communication Between Heterogeneous
Systems, Morgan Kaufmann Editor, October 2000.

[12] International Organization for Standardization. Information Processing
Systems - Open Systems Interconnections - LOTOS - A Formal
Description Technique Based on the Temporal Ordering of
Observational Behaviour, Standard ISO 8807, 1989.

[13] Computer Networks Group (NetGroup) at Politecnico di Torino, The
NetPDL Specification, May 2003, available at
http://www.nbee.org/NetPDL/.

