
Abstract—Although several applications need to know the 
format of network packets to per form their  tasks, till now, 
each application uses its own packet descr iption database. 
This paper addresses this problem by proposing the NetPDL, 
an XML-based language for  descr ibing packet headers, which 
has the potential of enabling the realization of a common, 
application-independent protocol descr iption database that 
can be shared among several applications. Fur ther , common 
functionalities related to the protocol database can be 
implemented in a library, which can be a basic building block 
for  implementing networking applications. 

 
Index Terms— Protocol Descr iption Language, NetPDL, 

XML, Protocol Header Descr iption. 

I. INTRODUCTION 

Several network applications — such as packet routing, 
traffic classification, network address translation, packet 
sniffing, traffic analysis, traffic generation, firewalling, 
intrusion detection — deal with packet headers, hence need 
to know packet formats. Even though packet processing is 
common to a large number of applications, at present no 
solution exists to delegate it to a single optimized 
component: packet processing is still implemented within 
applications by custom code.  

One problem with a general packet-processing 
component stems from the different flavors of packet 
processing required by applications. For example, while an 
application might need to filter packets to further process 
only a subset of those received, another one might need to 
modify the value of selected fields in each packet. A 
general packet processing component that fulfills the needs 
of any application would be required to have a large set of 
functionalities, hence a high complexity. Another problem 
stems from the high degree of portability required. In 
particular, the general packet processing component should 
be executable on a large number of platforms, ranging from 
hardware boxes (e.g. network switches), embedded devices 
(e.g. firewalls), and workstations, running a wide variety of 
operating systems. 

                                                           
  The work was partly funded by Microsoft Research, Cambridge (UK) 

and the System On Chip Division of Telecom Italia Lab S.p.A., Torino 
(Italy). 

1 Contact  information: Fulvio Risso, tel. +39 011 564.7008, fax +39 
011 564.7099, e-mail fulvio.risso@polito.it. 

These problems might have so far hampered the 
development of such a component. Irrespective of such 
problems, though, a first step towards moving packet 
processing functions out of applications consists in having a 
universal protocol header database, which is shared among 
all applications and contains packet descriptions for all 
network protocols. Current applications use a proprietary 
syntax to describe packet headers, and packet descriptions 
are often hardwired in their code. Consequently, supporting 
a new protocol requires the intervention of the developers 
of the specific application. Ethereal [4] and tcpdump [5], 
two well-known and widely deployed applications, have 
even two different protocol descriptions hardwired in their 
code: one used when filtering network packets in real-time, 
the other one when displaying packets in a user-friendly 
fashion. The first description is simple (and limited) 
because it is designed for high-speed operation (filtering). 
The second one is very comprehensive and the 
corresponding packet-processing engine is much slower 
than the one using the first description. 

This paper presents the Network Protocol Description 
Language (NetPDL), an application-independent packet 
format description language that enables the creation of a 
universal protocol description database — the NetPDL 
database. One of the main design objectives of NetPDL, 
unlike alternative protocol description solutions (see 
Section III), is simplicity. For this reason, NetPDL is not 
intended as a protocol specification tool; for example, it 
does not support the description of a protocol temporal 
behavior — e.g., a protocol state machine. Instead, NetPDL 
is targeted to an effective description of packet header 
formats and protocol encapsulations. 

NetPDL is based on the eXtensible Markup Language 
(XML) that is becoming the preferred way for exchanging 
structured data between different organizations. For this 
reason several tools, both stand-alone programs and 
libraries, exist for dealing with XML documents and can be 
leveraged for NetPDL handling. Moreover, XML 
documents are usually parsed by applications at run-time; 
by following the same approach with NetPDL, the protocol 
header database can be dynamically changed to include new 
protocols or protocol features, without even restarting 
applications.  

NETPDL: AN EXTENSIBLE XML-BASED 

LANGUAGE FOR PACKET HEADER DESCRIPTION
   

Fulvio Risso1 and Mario Baldi 
Dipartimento di Automatica e Informatica 

Politecnico di Torino 
Corso Duca degli Abruzzi, 24 - 10129 Torino (Italy) 

{ fulvio.risso,mario.baldi}@polito.it 



 2 

Notice that NetPDL is beneficial also to applications for 
which a generic packet processing engine and a shared 
database are not cost effective. An example is provided by 
applications that perform simple operations on a small 
variety of packet headers. In these cases implementing 
packet processing within the application might be simpler 
than creating or interfacing a generic packet processing 
engine and leveraging from existing header descriptions 
might seem to bring negligible advantages. However, 
basing header processing code on NetPDL descriptions 
enables transparent (i.e., not requiring modifications to the 
application code) support of newer versions of the 
protocols. 

Section II elaborates on the concept of various 
applications sharing a generic packet processing engine that 
operates according to protocol descriptions stored in a 
NetPDL database, where the latter can be dynamically 
updated.  A survey of existing languages for describing 
network protocol headers is provided in Section III that 
highlights their limitations for the application context 
addressed in this work. Section IV presents an overview of 
the NetPDL language and the architectural choices behind 
it, while Section V provides the details of most primitives 
of the NetPDL language. Section VI gives an overview of 
NetPDL extensions, i.e. a set of additional primitives that 
can be used to enrich NetPDL for specific purposes. In 
particular, Section VI presents an extension aiming at the 
description of how packet information should be displayed. 
Finally, Section VII provides performance figures of a 
NetPDL-based engine implementation. Conclusive remarks 
are presented in Section VIII. 

II. TOWARD NETPDL-BASED PACKET PROCESSING 

Figure 1 depicts possible scenarios for the deployment 
of a common protocol description database shared by 
various applications. A packet processing engine, i.e., a 
NetPDL-based engine in this context, can be either 
embedded into each application (left-hand side of Figure 1) 
or shared among several applications. 

NetPDL
p r o to c o l  
d a t a b a s e

Embedded 
N et P D L -

ba s ed En g i n e

A p p l i c a t i o n  1

S h a r ed
N et P D L -ba s ed 

En g i n e ( e. g .  D L L )

A p p l i c a t i o n  2 A p p l i c a t i o n  3

P u b l i c  A P I

Visualization
E x te nsions

N e tP D L
. . .

 

Figure 1. Relationships between applications, NetPDL 
protocol database, and NetPDL-based engines. 

A NetPDL-based engine uses a NetPDL protocol 
database (NetPDL database in short), i.e. a set of XML files 
that contain a description of protocol headers, to learn the 

structure of the packets it is supposed to process. Since the 
NetPDL database is external to both applications and 
NetPDL-based engines, it can be updated without requiring 
modifications to the code implementing them. The 
NetPDL-based engine parses these XML files and creates 
an internal, engine-specific, representation of protocol 
headers. For example, based on the protocol description 
obtained from the NetPDL database, a (NetPDL-based) 
packet filtering engine can pre-calculate the offset of each 
field from the packet beginning. This will result in faster 
location of the requested fields within each incoming 
packet. Hence, a filtering engine based on the NetPDL 
language can have the same performance of one based on 
custom protocol descriptions, i.e., hardwired in the code of 
the filtering engine itself. Hence, performances of NetPDL-
based engines do not depend on the characteristics of the 
language itself, which (being XML-based) may seem rather 
inefficient. From this point of view, a NetPDL description 
can be compared to a Java program, which can either be 
compiled into native code or interpreted at run-time. The 
execution time strongly depends on the tool used (compiler 
/ interpreter), not on the language itself. 

A NetPDL database can even be remotely stored on a 
centralized server accessible through the Internet. 
Geographically dispersed NetPDL-based engines can 
(periodically) download the most recent version of the 
NetPDL database, use the contained information to build 
their internal structures, and perform their processing. In 
this scenario NetPDL-based engines operate according to 
up-to-date and complete protocol descriptions contained in 
some external, remotely located XML files, while not 
suffering performance impairments during packet level 
processing. 

This paper does not focus on any specific NetPDL-
based engine, but rather on the definition of the NetPDL 
database. Nevertheless, Section VII provides measurements 
obtained with an existing NetPDL-based engine 
implemented in the NetBee library [3] with the objective of 
substantiating the above statements on performance.  

Implementing protocol-processing engines based on an 
external description database has limitations when coming 
to second order optimizations. For example, since a 
NetPDL-based engine works on a per-protocol basis, 
optimizations that rely on the combined presence of two or 
more protocol headers cannot be implemented within a 
NetPDL-based engine. Finally, more investigation is 
required to assess the applicability and benefits of NetPDL-
based packet processing in scenarios where performance 
requirements lead to the deployment of custom hardware 
optimized for a specific set of protocols. However, such 
application field is outside the scope of this work that 
focuses on software solutions. 

III. RELATED WORK 

This section provides an overview of known protocol 
description languages with specific emphasis on (1) support 
for packet header description, (2) support for protocol 
encapsulation description, (3) extensibility. 



 3 

Libpcap [6], one of the most widely used packet 
processing libraries, provides a set of functions that allow to 
selectively capture packets by means of a filter. The filter, 
specified in high-level language (e.g. “ tcp”  means “capture 
only TCP traffic” ), is translated into special assembly code 
that is executed by a fi ltering engine, the BPF (Berkeley 
Packet Filter) [6] virtual processor. Since the filter operates 
by checking the value of selected packet header fields, the 
protocol format must be known. Libpcap [7] embeds 
protocol definitions within its source code, which can be 
(hardly) modified only by recompiling the library. In 
essence, libpcap does not have a language to describe 
protocol headers; its simple language can be used to define 
a packet filter (operating on the most common protocol 
fields) and it cannot be used for other purposes. 

One of the best-known protocol description languages is 
the one deployed by Analyzer 2.0 [1], a protocol analyzer 
developed at by one of the authors. An easily extensible C-
like structure is used to describe packet header fields and 
protocol encapsulation. A most notable feature of the 
resulting packet processing architecture is the ability to both 
decode packets and customize their summary and detailed 
views based on external files — Description File Format 
(DFF) and Index File Format (IFF) configuration files. 
However, the Analyzer 2.0 protocol description language 
does not provide adequate support for variable-length fields 
and optional fields. 

FALCON [9] — an evolution of the Analyzer 2.0 
protocol description language, notwithstanding a different 
syntax — enables more complex computations, variable-
length fields, and optional fields to be specified. However, 
FALCON provides only primitives for packet decoding 
(e.g. packet displaying is not taken into consideration) and 
its protocol description files have poor readability from the 
standpoint of a user working on them without any 
specialized (e.g. GUI) tool. 

The GASP (Generator and Analyzer System for 
Protocol) Language [10] is similar to Analyzer’ s, but has a 
major emphasis on packet generation, rather than decoding. 
Like FALCON, it supports only header format description. 

The protocol description language used by SPY [11] 
provides checking primitives to validate the correctness of 
selected fields and its protocol description files have 
excellent readability. However it does not provide proper 
support for optional fields. Like Analyzer 2.0, it supports 
some visualization primitives (albeit quite poor ones: only a 
detailed view of the packet is supported, with limited 
customizability); however this feature is natively provided 
by the language, while Analyzer does the same though an 
extension mechanism, which allows arbitrary future 
enhancements. 

The protocol description language recently proposed in 
the JnetStream project [13] is probably the most flexible 
among the listed languages. It does support field format 
descriptions, optional fields (through conditional primitives 
such as if-then-else and more), field value validation and 
visualization directives (although the difference between 
summary and detailed view of the packet is not clear). 
However, it does not foresee extensions to the language, 
which means that new features not included in the “base” 

language cannot be added. In addition, the complete NPL 
(Network Protocol Language) description is not easy to 
read (despite its C-like syntax) since all directives are 
together without a clear separation between header format 
descriptions, field value validation and visualization 
directives. 

The Solidum PAX Pattern Description Language [12] is 
targeted at pattern description, a pattern being either a set of 
fields or a set of protocols. For instance, the IP/Ethernet 
stack is considered the most common “pattern”  to check 
when looking for ICMP packets. The language is designed 
with the objective of speeding up pattern matching 
operations on Solidum network processors. However, 
protocol encapsulation description with the PAX language 
is cumbersome since all the possible combinations of the 
formats for a given protocol have to be explicitly l isted 
when describing the encapsulation of a higher layer 
protocol. Finally, PAX does not provide displaying and 
checking primitives and does not properly support optional 
fields. 

Abstract Syntax Notation number One (ASN.1) [15] is 
an ISO standard notation often used to describe packet 
formats in protocol specification documents. ASN.1, 
although a standard, is not attractive for many applications, 
such as packet processing engines, due to its usage 
complexity. Moreover, several keywords are meaningless 
when dealing with protocol description, while other 
important features — such as support for describing 
protocol encapsulation — are missing. Furthermore, ASN.1 
parsing is not trivial and only a few public and open-source 
tools do exist. 

The ACT ONE language, part of the LOTOS 
standard [16], is another existing approach to header 
description. LOTOS, a Formal Description Technique 
standardized by ISO for the design of distributed systems, 
consists of two parts: (1) a process algebraic part is 
intended for modeling the dynamic behaviors of systems, 
and (2) a data algebraic part is proposed for modeling data 
structures and value expressions. While the former has a 
different purpose than NetPDL, the latter, based on the 
abstract data type language ACT ONE, compares to 
NetPDL. However, ACT ONE has been widely recognized 
to be complex to use: the very nature of its building 
elements and the rigidity of its model lead to lengthy 
specifications with a lot of repetitive, technical details that 
clutter the specification [17]. The enhanced version E-
LOTOS [18], while addressing some of these issues, is still 
quite complex to use and heavily oriented to protocol 
specification and verification. Consequently, it does not 
support application-specific extensions, such as data 
visualization.  With respect to the objectives and intended 
applications of NetPDL, analogous considerations apply 
also to Estelle [19], a currently withdrawn standard. 

Finally, the ABNF notation [14] includes some 
interesting features that are useful when describing complex 
messages (like the ones of SMTP and HTTP); however it is 
fairly complex (due to its compact and very efficient 
syntax) and it does not include any extension mechanism 
for supporting other than header format descriptions. 



 4 

In summary, the languages for protocol description 
proposed thus far display several weaknesses, especially 
with respect to extensibility, simplicity; most of them also 
lack effective support for optional fields. Particularly, none 
of the examined languages provides an explicit way to be 
extended and only some of them support the definition of 
visualization and checking primitives. These reasons 
motivated the creation of NetPDL, which aims specifically 
at addressing the above shortcomings. 

IV. NETPDL OVERVIEW 

This section presents the general architecture of NetPDL 
and the ideas behind the language. After a brief look at 
XML (on which NetPDL is based), an overview of the 
protocol description language will be presented. 

A. XML Brief and Terminology 

The eXtensible Markup Language (XML) [21] is a 
simple, flexible text format derived from the Standard 
Generalized Markup Language (SGML), a.k.a. ISO 
8879 [22]. Originally designed to meet the challenges of 
large-scale electronic publishing, XML is playing an 
increasingly important role in a wide variety of data 
exchanges between computer systems using web-based 
protocols or others. 

XML documents usually consist of elements, also called 
tags, delimited by the ‘<’  and ‘>’  characters. Each element 
contains a name and an optional set of attributes; a value 
might be optionally specified for each attribute. For 
instance, 

<f r ui t  name=” appl e” / > 

is an element called f r ui t , with an attribute named name 
whose value is appl e. Instead,  

<per son>John Bl ack</ per son> 

is an element called per son, that does not have any 
attribute, and whose content is John Bl ack . Elements 
can be nested (e.g. the content of <per son> can include 
<age>) in order to create more complex structures. 

The XML specification does not define elements and 
attributes. This is done by using the syntactical rules 
defined by XML to specify what elements, attributes and 
values are valid for a specific application. For instance, an 
XML-based language aimed at describing living creatures 
could include a tag called <per son>, while a language 
aimed at describing food could include a tag called 
<f r ui t >. Text files compliant to either the XML DTD 
(Document Type Definition) or the more powerful XML 
Schema standards define the valid elements of a language. 
Although these files are not strictly compulsory, they 
provide a standard way to specify the syntactical rules of an 
XML-based language; therefore their use is strongly 
encouraged.  

An application supposed to use XML-based documents 
must include an XML parser. The parsing process can be 
split into two steps. First, locating XML elements, attributes 
and their values; second, performing semantic actions 

associated to each element, e.g. create a new database 
record for the given person. 

The first step is application-independent and several 
XML parsing tools, often called XML engines, are 
available, most notably the largely used Apache 
Xerces [24] and Microsoft’s. For example, a typical output 
of the first parser is that the first valid XML tag within a 
document is the element <per son>. The second step is, 
obviously, application-dependent. The creation of a 
NetPDL-based engine requires implementing only this 
second parsing step since an existing tool can be deployed 
for the first one.  

B. Why XML 

One of the most common objections moved to NetPDL 
concerns its being based on XML instead of a procedural 
language like C or Java. The main reason for having chosen 
XML is that tokens of traditional programming languages 
cannot be extended. For instance, although a st r uct  in 
the C language may be suitable to describe a protocol 
header, different applications might need different kinds of 
information to be provided together with packet header 
formats. For example, an application might need a 
description of how a field should be printed (e.g. as a 
hex/dec number), while another might need a specification 
of the validity range of its values. Hence, an application 
programmer needs to be able to extend a packet description 
language to provide the constructs required to describe 
specific aspects needed by specific applications. 
Extensibility is one of the key features of NetPDL and can 
be easily obtained through the definition of new XML 
attributes associated to base language elements. The same 
result cannot be achieved with traditional programming 
languages unless heavily modified, hence changing their 
very essence. Instead XML has built-in extensibility due to 
the structure itself of an XML document based on elements 
and attributes (as described in the previous section). New 
elements and attributes can be added while preserving 
backward compatibility with prior application-dependent 
XML parsers that can simply ignore tokens that they are not 
able to process. 

There are several additional reasons besides 
extensibility for choosing XML. Being plain text files, 
XML descriptions can be easily edited and debugged on 
any platform with a simple text editor. Overall, thanks to 
the availability of XML libraries that take care of the first 
parsing step, implementing parsers for XML-based 
documents is definitely simpler than for any other existing 
language, whose parser is usually based on the l ex  and 
yacc  UNIX utilities. In addition, XML has the capability 
for strong syntactical validation, which may even be 
performed before the first parsing step by an application-
independent XML tool according to companion definition 
documents following the DTD or XML Schema standards. 
This further simplifies the implementation and execution of 
application-dependent parsers since the validation process 
(which is performed automatically during the first parsing 
step) eliminates a large set of possible errors (e.g. invalid 
tags, out of range values, etc.). Last but not least, XML 



 5 

offers portability across different platforms, specifically 
web-based ones. For instance, it is pretty simple to visualize 
an XML description as a web page following the formatting 
rules specified by a companion eXtensible Stylesheet 
Language (XSL) file. 

C. NetPDL Basics 

NetPDL aims at describing packets as defined by 
network protocol specifications. This includes two 
complementary descriptions:  
• the packet format: the list and format of the fields 

constituting a packet, and 
• the protocol encapsulation: the rules on the fields of a 

packet that determine how — i.e., according to which 
protocol — to interpret the sequence of bytes 
constituting the payload of the packet. 

 
NetPDL was designed with the following objectives.  

1. Simplicity: the syntax should be intuitive so that (1) it 
can be easily understood without a deep knowledge of 
the language and (2) protocol descriptions can be 
written using a simple text editor.  

2. Completeness: the language must include a set of base 
primitives suitable to describe packet headers of the 
most common (present and possibly future) protocols, 
thus defining the way they can be processed. External 
plug-ins can be invoked by the NetPDL-based engine 
for dealing with packet header formats that cannot be 
described by the abovementioned primitives.  

3. Extensibility: the language must support the addition 
of new primitives to the small set of base elements, 
allowing for the language to be tailored to a wide range 
of applications. Backward compatibility must be 
ensured when adding primitives: applications using the 
language must be able to skip over unknown 
primitives. 

4. Efficiency: the performance of applications integrating 
or deploying (see the two possible architectures in 
Figure 1) NetPDL-based engines must be comparable 
to the ones of applications that include custom code for 
packet processing possibly based on hardwired packet 
descriptions.  

The above objectives have driven several choices in the 
XML-based specification of NetPDL. Each primitive 
consists of an element characterized by several attributes. 
For instance, a header field is an element, the field size 
being an attribute of the element. 

 

<pr ot o name=" Et her net " >
<f i el ds>

<f i xed name=" dst "  s i ze=" 6" / >
<f i xed name=" s r c "  s i ze=" 6" / >
<f i xed name=" t ype- l engt h"  s i ze=" 2" / >

</ f i el ds>

<next pr ot o>
<swi t ch>

<expr  t ype=" i nt " >
<f i el dr ef  name=" t ype- l engt h" >

</ expr >

<case val ue=" 2048" ><pr ot or ef name=" I P" / ></ case>
<case val ue=" 2054" ><pr ot or ef name=" ARP" / ></ case>

</ swi t ch>
</ nex t pr ot o>

</ pr ot o>  

Figure 2. Excerpt of the NetPDL descr iption of the 
Ethernet Header . 

Figure 2 shows an excerpt of the NetPDL description of 
the Ethernet header that consists of 3 fixed-length fields2, 
whose length is respectively six, six, and two bytes. As 
shown by this example, NetPDL represents each field as an 
element containing n bytes. The <next pr ot o> element 
contains the protocol encapsulation description, i.e., it 
specifies how to determine the protocol (as indicated by the 
value of the <pr ot or ef > element) following the current 
Ethernet header based on the value of the t ype- l engt h 
field (as specified by the value of the <f i el dr ef > 
element). 

V. THE LANGUAGE 

The main objective of the NetPDL specification is the 
description of packet header formats and network protocol 
encapsulation. This section briefly presents the elements 
and attributes used for these purposes. 

A. General Structure 

A NetPDL document, whose general structure is shown 
in Figure 3, contains elements that enable proper packet 
processing. The document consists of a set of descriptions, 
each one referred to a single protocol and contained into a 
<pr ot o> element. Each description includes the elements 
specifying header formats (inside the <f i el ds> element) 
and encapsulation (within the <next pr ot o> element), as 
shown in Figure 2. 

                                                           
2 For simplicity, Preamble, Start Frame Delimiter, and Frame Check 

Sequence are not shown in this sample description. 



 6 

<net pdl >

<pr ot o name=" _s t ar t pr ot o" >
<! – Det er mi ne whi ch i s  t he f i r s t  header  - - >
<! – t hat  i s  pr esent  i n t he packet  - - >

</ pr ot o>

<pr ot o name=" Fi r s t Pr ot o" >
<f i el ds>

<! - - f i el d l i s t  - - >
</ f i el ds>

<next pr ot o>
<! - - encapsul at i on i nf o - - >

</ nex t pr ot o>
</ pr ot o>

<! - - Ot her  pr ot ocol s  - - >

<pr ot o name=" _def aul t pr ot o" >
<! – " Las t  r esor t "  pr ot ocol  - - >

</ pr ot o>

</ net pdl >  

Figure 3. General structure of a NetPDL document. 

A NetPDL-based engine will start processing a packet 
(e.g. its binary dump) by matching the byte sequence with 
the elements of the description in the order they appear. 

Some predefined protocols (_st ar t pr ot o and 
_def aul t pr ot o) are used in special cases, such as the 
“ first”  protocol of the encapsulation sequence and the “ last 
resort”  protocol to be used when no suitable protocol 
description is available for processing the remaining data of 
a packet. More details will be presented in the next sections. 

B. Base Elements for Packet Header Description 

The headers defined by the majority of the protocols 
currently in use contain a small set of fields, which, most 
often, can be categorized according to one of the six types 
shown in Table 1. 

 
NetPDL 
el em en t Des c r i p ti o n  
<f i xed> Fixed-l en g t h  f iel ds ,  a l ig n ed t o  a  b y t e b o u n da r y  

<masked> Fiel d t h a t  c o n t a in s  b it  f iel ds  
<bi t > B it  f iel ds  

<var i abl e> V a r ia b l e-l en g t h  f iel d 
<l i ne> C R / L F t er m in a t ed v a r ia b l e l en g t h  f iel d 

<paddi ng> Fiel d r ea l ig n in g  t h e h ea der  t o  a  1 6  o r  3 2  b it  
b o u n da r y  

Table 1 Basic field types defined in NetPDL. 

The vast majority of header fields has a fixed length and 
is aligned to a byte boundary. Less frequently, a field is 
composed of a few bits or has a variable length that can be 
determined only at packet-processing time. Variable-length 
fields can be either length bounded (i.e., the length is 
specified by the value of another field) or sentinel bounded 
(i.e., a given character or string indicates the end of the 
field). The above types of fields can be specified through 
the <f i xed> (for fixed-length fields), <masked> 
(identifying the part of a header that contains bit fields), 
<bi t > (for a bit field), and <var i abl e> elements. 
Additional characteristics, such as the length of a 
<var i abl e> field, can be described by means of specific 
attributes. All the above types are deployed in the example 
shown in Figure 4. 

Due to their widespread presence in packet headers, 
NetPDL includes two additional pre-defined field types: the 
line field (<l i ne>) — an ASCII l ine, which is a string 
terminated by a carriage return (CR) or CR+LF (Line Feed) 
character  — and the padding field (<paddi ng>) — often 
used to align a protocol header to a 16 or 32 bit boundary. 

A field is completely characterized by specifying its 
length, the number of occurrences, and its position in the 
packet. However, the latter two items are usually not 
needed, because normally a field is placed after a given 
preceding field and occurs only once. In order to keep the 
notation simple, only the length of the field (through the 
attribute si ze) must be always specified for fixed length 
fields. The description of fields repeated multiple times is 
addressed in Section V.C.4, while the position of a field can 
be specified through the optional attribute of f set . A 
packet trailer is a typical case in which this attribute is 
deployed. 

C. Advanced Elements for Packet Header 
Description 

The elements described above are often not sufficient: 
the header of a protocol as common as IP is one such 
example. This section introduces a number of more 
sophisticated, yet generally useful elements. 

1. Field Blocks 
The <bl ock> element, a container for fields, aims at 

improving readability of packet header descriptions. The 
content of a <bl ock> element is included in a protocol 
description through the <i ncl udebl k> tag, whose 
functionality can be compared to the one of macro 
expansions encompassed by most high-level languages. 
When an <i ncl udebl k> tag is found, its content is 
replaced by the content of the corresponding <bl ock> 
element. 

We foresee two deployment scenarios for the <bl ock> 
element. First, it can be used to isolate a portion of NetPDL 
code that has a distinctive identity or function. An example 
can be seen in Figure 4: each option of the IPv6 protocol is 
defined within a distinct block in order to organize the 
NetPDL code in a clearer way. The second scenario is 
related to compactness: the same block of fields can be 
present several times within the protocol; the <bl ock> 
element allows defining it once and the <i ncl udebl k> 
element enables using it multiple times within the header 
stack or within different contexts. The OSPF protocol 
provides an example of the latter: a Link State 
Advertisement header can be found in several OSPF 
packets (e.g. database description packets, 
acknowledgements, and others). The group of fields is 
described once, and it is recalled several times by means of 
the <i ncl udebl k> element. 

 



 7 

<pr ot o name=" I Pv6" >
<f i el ds>

<masked name=" ver - t c - f l abel "  s i ze=" 4" >
<bi t  name=" ver "  mask=" F0000000" / >
<bi t  name=" t os"  mask=" 0F000000" / >
<bi t  name=" f l abel "  mask=" 00FFFFFF" / >

</ masked>
<f i xed name=" pl en"  s i ze=" 2" / >
<f i xed name=" next hdr "  s i ze=" 1" / >
<f i xed name=" hop"  s i ze=" 1" / >
<f i xed name=" sr c"  s i ze=" 16" / >
<f i xed name=" ds t "  s i ze=" 16" / >

<l oop t ype=" whi l e" >
<! - - Loop unt i l  we f i nd a ' br eak '  - - >
<expr  t ype=" bool " >

<number  val ue=" 1" / >
</ expr >

<swi t ch>
<expr t ype=" i nt " >

<f i el dr ef name=" nex t hdr " >
</ expr >

<case val ue=" 0" >
<i ncl udebl k  name=" HBH" / >

</ case>

<! - - Ot her  opt i ons  f ol l ow her e - - >

<def aul t >
<l oopct r l  t ype=" br eak" / >

</ def aul t >
</ swi t ch>

</ l oop>
</ f i el ds>

<nex t pr ot o>
<swi t ch>

<expr t ype=" i nt " >
<f i el dr ef name=" next hdr " >

</ expr >

<case val ue=" 6" ><pr ot or ef  name=" TCP" / ></ case>
<case val ue=" 17" ><pr ot or ef  name=" UDP" / ></ case>

</ swi t ch>
</ next pr ot o>

<bl ock  name=" HBH"  l ongname=" Hop By Hop Opt i on" >
<f i el ds>

<f i xed name=" nex t hdr "  s i ze=" 1" / >
<f i xed name=" hel en"  s i ze=" 1" / >
<var i abl e name=" Opt i ons"  t ype=" si ze" >

<expr  t ype=" i nt " >
<f i el dr ef  name=" hel en" / >

</ expr >
</ var i abl e>

</ f i el ds>
</ bl ock>

</ pr ot o>  

Figure 4. Extract from the IPv6 header  descr iption: 
<loop>, <switch>, <block> and <includeblk> 

elements. 

2. Conditional elements 
It is not uncommon within protocol headers that the 

presence (or a value) of a field depends on the value of 
another field. Optional fields, like IP options, are an 
example. Two NetPDL elements have been defined to 
address this issue: the <swi t ch>- <case> and <i f > 
elements. The former allows multiple alternative 
descriptions to be provided; the one actually considered 
when processing a packet is determined by the evaluation 
of a simple condition, which is usually dependent on the 
value of another field (the one named “ next hdr ”  in 
Figure 4). By default, each <case> compares a given 
value against the value of the field specified within the 

<swi t ch> element, although some more complex 
conditions can be defined. For instance, the condition “ this 
case must be selected for all values between 10 and 20”  is 
given by <case val ue=“ 10”  maxval ue=“ 20” >. 
Conditions are evaluated in order; therefore a <case> 
description is applied only if no other preceding condition 
matches. The element <def aul t >, also exemplified in 
Figure 4, indicates a “default choice”  in case no other 
choice is suitable. 

The <i f > element enables the description of a group of 
fields to be made dependent on the evaluation of an 
arbitrarily complex condition, (e.g. the value of several 
other fields). The <expr > element can be used to define 
the condition in the context of the <i f > element. An 
example of the <i f > and <expr > element deployment 
can be found in Figure 5. 

3. Expressions 
NetPDL supports mathematical, logical and string 

expressions that are needed by conditional elements. 
Expressions are possibly the most complex structures of 
NetPDL, mainly because users are often used to think about 
expression in infix notation (A+B* C), which is not 
appropriate for XML. In fact, although some solutions for 
using such a notation exist even in XML, the choice for 
NetPDL has been to define expressions in “native”  XML 
structures. This enables their syntactical correctness to be 
verified through simple XML rules. 

Figure 5 includes a sample expression: the <expr > 
element defines the entire expression, while child elements 
define operands and operators. 

4. Repeating a field or a group of fields 
The repetition of a field (or a group of fields) is rather 

common and is addressed by the <l oop> element. The 
following four variants identified by the t ype attribute as 
shown in Figure 4, are available. 
• Size-bounded loop: a (group of) field(s) is iterated until 

the cumulative size becomes equal to a given value. 
• Occurrence-bounded loop: a (group of) field(s) is 

iterated a given number of times. 
• While-bounded loop: a (group of) field(s) is iterated 

until a given condition is true (see Figure 4). 
• Do-bounded loop: a (group of) field(s) is present at least 

once; the number of repetitions depends on a given 
condition. 
The <l oopct r l > element forces a corresponding 

repetition (as specified by a <l oop> element) to be 
restarted or interrupted — similarly to the C/C++ break and 
continue instructions. The description of the IPv6 protocol 
header, shown in Figure 4, contains a while variant of the 
<l oop> element. An IPv6 header possibly consists of 
various optional headers; the number is not known in 
advance. Each optional header has a “next header”  field 
(<f i xed name=“ next hdr ” >) that identifies the next 
optional header. Thus, a packet processing engine should 
continue looking for optional headers as long as the value 
of the “next header”  field equals one of the values specified 
as valid. In Figure 4 this is expressed through a <swi t ch> 



 8 

element that lists all the valid values for the next hdr  
field. The loop (i.e., repetition of the optional header) is 
repeated until an “ invalid”  value is found in the “next 
header”  field3; in this case, the <l oopct r l > element 
breaks the loop. 

5. Expressions with Lookahead Operands 
Sometimes, expressions are required to look at some 

bytes that have not been associated to any field yet. An 
example can be found in the widespread Ethernet and 
IEEE 802.3 headers: the field spanning the 13th and 14th 
bytes from the beginning of a frame can be either the 
Ethernet 2.0 et her t ype or the IEEE 802.3 l engt h 
field, depending on whether its value is greater than 1500 or 
not, respectively. Obviously, it is not possible to determine 
whether to interpret the above-mentioned pair of bytes as 
either a l engt h or an et her t ype field before actually 
checking their value. NetPDL addresses this situation 
through lookahead operands. 

When evaluating an expression, a NetPDL-based engine 
can interpret the next bytes in a packet dump (which have 
not been assigned to any field) as they were belonging to a 
new field, and evaluate the expression according to this 
value. 

 
<pr ot o name=" Et her net " >

<f i el ds>
<f i xed name=" ds t "  s i ze=" 6" / >
<f i xed name=" sr c"  s i ze=" 6" / >

<i f >
<expr  t ype=" bool " >

<l ookahead>
<f i xed s i ze=" 2" / >

</ l ookahead>
<oper =" l e" / >
<number  val ue=" 1500" / >

</ expr >

<i f - t r ue>
<f i xed name=" l engt h"  s i ze=" 2" / >

</ i f - t r ue>

<i f - f al se>
<f i xed name=" et her t ype"  s i ze=" 2" / >

</ i f - f al se>
</ i f >

</ f i el ds>
. . .

</ pr ot o>
 

Figure 5. Ethernet header  descr iption, differentiating 
between the IEEE and DIX formats. 

The use of a <l ookahead> operand for the 
description of Ethernet headers is shown in Figure 5, which 
can be compared to Figure 2 where the same header is 
described without differentiating between the IEEE and 
Ethernet 2.0 formats. The 13th and 14th bytes are evaluated 
as they were part of a <f i xed> field, which is used to 
determine which branch of the <i f > element specifies how 
to process the sequence of bytes. According to the selected 

                                                           
3 More precisely, the repetition is interrupted when the value of the 

“next header”  field does not match any of the <case> elements. This 
happens, for example, when the next header is the TCP or UDP one. 

branch, the two bytes used to evaluate the expression are 
interpreted as the actual field — l engt h or et her t ype. 

6. Custom plug-ins 
For the sake of simplicity, NetPDL does not aim at 

supporting the description of every possible feature ever 
defined within a protocol. Instead, NetPDL provides a 
<pl ugi n> element to enable the deployment of external 
code to handle protocol header features not directly 
supported by NetPDL elements. The <pl ugi n> element 
defines a link to custom code that can be part of either the 
NetPDL-based engine or an external library (e.g. a 
Dynamic Link Library in Win32). This element can be 
used, for example, to implement the processing of protocols 
that have a very complex structure (e.g. DNS, SNMP etc.). 

Since a <pl ugi n> is an interface toward special 
purpose native code, each NetPDL engine implementation 
must include (in addition to the code implementing NetPDL 
primitives) the ad-hoc code corresponding to the plug-ins 
possibly in use. 

D. Protocol Encapsulation 

This section presents the NetPDL primitives for 
handling protocol encapsulation, i.e., how to specify the 
protocol description to be used in processing a packet’s 
payload. Protocol encapsulation is based on the 
<next pr ot o> element, as shown in the Ethernet 
description example in Figure 2. 

For most protocols, encapsulation is based on the value 
of one or more header fields. The relationship between the 
value of such fields and the encapsulated protocol can be 
specified by the <pr ot or ef > element deployed within 
<swi t ch>- <case> or <i f > elements, which are used 
to evaluate the condition that brings to the correct 
encapsulated protocol. The <swi t ch>- <case> element 
is usually deployed to identify an encapsulated protocol 
through the value of a single field (see Figure 2 for an 
example), while the <i f > element allows encapsulation to 
be made dependent on complex conditions (see [20] for 
details and examples). 

In some cases, the encapsulated protocol is not 
(univocally) identified by any field in the encapsulating 
packet header: further processing of the encapsulated 
header is needed to ensure proper identification of the 
corresponding protocol. For instance, a BOOTP (Boot 
Protocol) and a DHCP (Dynamic Host Configuration 
Protocol) packet can be discriminated only by the value of a 
field within their own header. The <pr esent i f > element 
supports such cases by defining a condition to be evaluated 
while processing a packet header in order to verify that the 
correct header description is being used. If the condition is 
valued false, the protocol description used so far for the 
processing does not match the byte stream and another one 
must be selected. An example can be seen in Figure 6: the 
IPv4 protocol is characterized by the “version”  field 
(<f i el dr ef  name=“ ver ” / >) containing a value equal 
(<oper  t ype=“ eq” >) to four (<number  
val ue=“ 4” / >). In case the portion of packet that would 



 9 

correspond to that field contains a different value, the byte 
sequence being processed is not an IPv4 packet. 

<pr ot o name=" I Pv4" >
<pr esent i f >

<! - - Check  t hat  ' ver s i on'  i s  equal  t o ' 4'  - - >
<expr  t ype=" bool " >

<f i el dr ef  name=" ver " / >
<oper  t ype=" eq" / >
<number  val ue=" 4" / >

</ expr >
</ pr esent i f >

<f i el ds>
<masked name=" ver hl en" >

<bi t  name=" ver "  mask=" F0" / >
<bi t  name=" hl en"  mask=" 0F" / >

</ masked>
. . .

</ f i el ds>
</ pr ot o>  

Figure 6. Excerpt from the descr iption of the IPv4 
header : the <presentif> element. 

Notwithstanding the versatility of its primitives, 
NetPDL does not support encapsulation rules for a few 
protocols. For example, there are no fields neither within 
the UDP nor the RTP (Real-Time Transport Protocol) 
headers that can be used to uniquely identify RTP packets. 
In particular, reliable identification of RTP packets requires 
processing of state information on an RTP session, which is 
not adequately supported by the current NetPDL 
specification. In fact, NetPDL provides only limited 
support, by means of custom variables (see Section E), for 
stateful packet processing. 

Finally, a NetPDL-based engine takes pre-defined 
actions when the packet header format cannot be inferred 
by matching the provided NetPDL packet descriptions to 
the byte stream being processed. This happens at least in 
two cases. First, when starting processing a new data unit, 
the first bytes must be interpreted according to the link-
layer type of the interface through which the packet dump 
has been received and cannot be inferred from the data 
itself. The _st ar t pr ot o primitive protocol identifier 
specifies according to which header description the first 
bytes of a sequence should be interpreted/processed. 
Second, when none of the available protocol descriptions 
can be mapped to the byte sequence being processed, the 
_def aul t pr ot o primitive protocol identifier specifies a 
sort of “ last resort”  protocol, i.e., a header description to be 
used when no other protocol description applies. 

E. Variables 

Variables can be declared within a NetPDL description 
and manipulated at run time. The validity of a variable can 
be limited in time — specifically, a volatile variable is valid 
only while processing one packet, while the content of a 
static variable is preserved through different packets — and 
in scope — specifically, a local variable is valid only when 
processing fields of the associated protocol header, while a 
global one is valid while processing the entire packet. 
Hence, a variable belongs to one of the four categories 
resulting from all combinations of validity: local–volatile, 
local–static, global–volatile, global–static. Permanent 
(static) variables allow information to be kept while 

processing subsequent packets, thus enabling a limited 
degree of stateful packet processing.  

Each NetPDL-based engine has a number of predefined 
global variables containing common information such as 
the link-layer type and, length of the frame being processed 
and the total number of bytes available for processing (for 
example, the user can choose to capture and/or store only 
the first part of a packet), the number of bytes processed 
(e.g. decoded) within the frame, the number of bytes 
processed within the current protocol header, a timestamp 
containing the time at which the related byte sequence was 
captured on the network. These default variables can be 
accessed from NetPDL when processing the corresponding 
protocol headers. In addition, the user can create its own 
variables. 

Short Ethernet frames provide an example of a situation 
in which global volatile variables are needed. The shortest 
Ethernet frame is 64 bytes, however the number of valid 
bytes in the payload can be smaller than 64 when carrying a 
short packet, hence “padding”  is present. Since the Ethernet 
2.0 frame does not have a “ frame length”  field, the number 
of valid bytes within the Ethernet payload is kept in a 
global variable and must be inferred when processing the 
next level protocol. According to the IP description in [20], 
a NetPDL-based engine processing an IP packet received 
within a short Ethernet frame will properly update the 
variable containing the Ethernet payload size. 

VI. NETPDL EXTENSIONS 

One of the most valuable characteristics of NetPDL is 
its extensibility, i.e. the possibility to add new keywords 
(that can be inserted as either attributes of existing NetPDL 
elements or new elements) that will be used by some 
applications for their purposes. An example of a possible 
extension is attaching to header fields information related to 
their validity range; for instance, some fields allow only a 
limited set of values, while others (e.g. CRC fields) must 
have a precise value. 

Extending NetPDL in order to support new features is 
rather simple. As an example, this section presents the first 
extension to this language, called NetPDL Visualization 
Extension, which provides information on how a decoded 
packet should be displayed. For instance, a 32-bit string 
representing an IP address should be displayed in dotted-
decimal form, while a 32-bit string representing a CRC 
should be displayed as a hexadecimal number. 

Only the capability to parse protocol descriptions based 
on NetPDL core is required from a NetPDL-based engine. 
Besides this, a NetPDL engine might process only 
extensions relevant to the specific application for which it 
was designed (e.g., packet filtering). Therefore, a NetPDL-
based engine that does not support new extensions simply 
ignores extension specific attributes and elements, thus 
operating on a description like the one in Figure 2. 

Thanks to the properties of XML, extensions can be 
written in files separate from the “core”  specification, 
improving both readability and maintainability (users can 
update files separately). 



 10 

A. The NetPDL Visualization Extension 

The NetPDL Visualization Extension (the complete 
specification can be found in [20]) has been designed to 
support protocol analyzers (a.k.a. sniffers), which need to 
display captured data streams in an intuitive and user-
friendly way. While NetPDL elements provide protocol 
analyzers with enough information to decode packets, the 
Visualization Extension provides the additional information 
needed for displaying packet fields. 

The existing NetPDL Visualization Extension allows 
the definition of two views: a summary view, which 
includes the most important fields to be shown for each 
packet, and a detailed view, which includes all the fields of 
each packet, in full detail. 

Even though the NetPDL Visualization Extension does 
not represent the only possible solution for protocol 
visualization, it is noteworthy in terms of simplicity and 
efficiency. For instance, XSL Transformations [23] have 
been considered for the definition of the above views since 
our packet decoding engine (presented in Section VII) 
produces an XML output (the PDML format, described in 
[20]). Even though XSL Transformations allow for richer 
visualization features, the user has to learn yet another 
(rather complex) programming language in order to handle 
visualization, which is against one of the main goals 
motivating our work: simplicity. The NetPDL Visualization 
Extension, instead, defines only a few visualization 
primitives that are based on the same principles of the core 
primitives, hence quick to get familiar with. Moreover, 
experiences with XSL processing have shown it 
computation intensive and slow; particularly, processing 
time grows linearly with the number of protocols involved 
(although this might be just a feature of the software 
package we used). For instance, an experiment on a 
Pentium IV – 2.4 GHz machine has shown that displaying a 
packet requires about 2.5 ms with XSL (Xalan-C [25] 
implementation) and about 0.6 ms with the NetPDL 
Visualization Extension (more details are provided in Table 
2). In any case, it is a decision of each NetPDL-based 
engine developer whether to implement the Visualization 
Extension or to rely on the XSL Transformations instead. 
For the sake of this paper the NetPDL Visualization 
Extension is just an example of a possible extension to the 
NetPDL language. 

B. Displaying the details of a packet 

The NetPDL Visualization Extension defines a set of 
elements and attributes that are used within a visualization 
section, or template, to specify how each field is to be 
displayed. Each NetPDL field contains a reference to a 
template (through the showt empl at e attribute) that 
contains the relevant visualization elements. 

The most important attributes contained in the 
visualization template are showt ype, showgr p, and 
showsep, which determine respectively the format 
(hexadecimal, decimal, ascii, or binary) of each byte, how 
bytes must be grouped, and the separator string between the 
groups. For example the MAC source and destination fields 
in Figure 7 specify that the field should be shown using the 

Et hMAC template. This template displays a field by 
splitting its value in two parts (of three bytes each, as 
specified by the showgr p attribute) of hexadecimal 
numbers (showt ype attribute) separated by a “ - ”  sign 
(showsep attribute). The final result looks like 000800-
AB34F9. 

The <showdt l > element defines a custom template 
that can be used to describe more sophisticated displaying 
rules. For example, in Figure 7 the template associated to a 
MAC address (Et hMAC) verifies the type of the address 
(i.e., unicast, multicast, or broadcast) and displays a string 
identifying such type.  

Similarly, the <showmap> element compares the field 
value against a set of choices to determine a suitable 
displaying format. For example, in Figure 7, this 
mechanism is used to determine the manufacturer of the 
network interface card (which depends on the first three 
bytes of the MAC address) and to show its name. The 
<showdt l > and <showmap> elements use various tags, 
such as <i f > and <swi t ch> - <case>, already defined 
within the NetPDL. 

In case the proper way of displaying specific 
information cannot be expressed by means of the previous 
attributes and elements, the showpl g attribute references a 
custom visualization plugin natively implemented into the 
NetPDL-based engine. An example is a plug-in that 
displays the canonical name (e.g. www. f oo. bar ) 
corresponding to IP addresses. The plug-in mechanism in 
the Visualization Extension is similar to the one in the base 
language (<pl ugi n> element in Section V.C.6) and 
enables full flexibility through complete customizability of 
packet visualization. 



 11 

<pr ot o name=" Et her net " l ongname=" Et her net  802. 3" >
<f i el ds>

<f i xed name=" dst " l ongname=" MAC Dest i nat i on"  s i ze=" 6"
showt empl at e=" Et hMAC" / >

<f i xed name=" sr c " l ongname=" MAC Sour ce"  s i ze=" 6"
showt empl at e=" Et hMAC" / >

<f i xed name=" t ype- l engt h" l ongname=" Type - Lengt h"
s i ze=" 2"  showt empl at e=" Fi el dHex" / >

</ f i el ds>
. . .

</ pr ot o>
. . .
<net pdl show>

<showt empl at e name=" Fi el dHex" showt ype=" hex" / >

<showt empl at e name=" Et hMAC"
showt ype=" hex" showgr p=" 3" showsep=" - " >

<showmap>
<expr t ype=" st r i ng" >

<! - - Ex t r act  t he f i r s t  3 by t es  of  t he addr ess  - - >
<s t r f i el dr ef  s t ar t at =" 0"  s i ze=" 3" / >

</ expr >

<case val ue=" FFFFFF"  show=" Br oadcas t  addr ess" / > 
<case val ue=" 000001"  show=" Super LAN- 2U" / >
. . .
<def aul t  show=" code not  avai l abl e" / >

</ showmap>

<showdt l >
<pdml f i el d at t r i b=" show" / >
<i f >

<! - - I t  ex t r ac t s t he f i r s t  byt e of  t he - - >
<! - - MAC addr ess,  t hen i t  mat ches  t he r esul t  - - >
<! - - agai nst  t he ' xxxxxxx0'  pat t er n - - >
<expr t ype=" bool " >

<f i el dr ef  s t ar t at =" 0"  s i ze=" 1" / >
<oper t ype=" mat ch" / >
<pat t er n val ue=" xxxxxxx0" / >

</ expr >

<i f - t r ue>
<t ext  val ue=" Uni cas t addr ess ( Vendor  " / >
<pdml f i el d at t r i b=" showmap" / >
<t ext  val ue=" ) " / >

</ i f - t r ue>
</ i f >
. . .

</ showdt l >
</ showt empl at e>

</ net pdl show>  

Figure 7. Complete NetPDL descr iption, with 
visualization extensions. 

C. Displaying the summary of a packet 

The Visualization Extension includes a set of primitives 
for creating a summary view of each packet. A protocol 
summary should include the most important information to 
be displayed and how to display it; a NetPDL-based engine 
(particularly its visualization extension code) will put all the 
“protocol summaries” together transparently. The 
summaries related to all the protocols subsequently 
encapsulated into a packet are appended to one another to 
create a single string. 

 

<pr ot o name=" Et her net "  showsumt empl at e=" et h" >
<f i el ds>

. . .
</ f i el ds>
. . .

<net pdl show>
<showsumt empl at e name=" et h" >

<sect i on name=" nex t " / >
<t ext  val ue=" Et h:  " / >
<pdml f i el d name=" s r c"  at t r i b=" show" / >
<t ext  val ue="  => " / >
<pdml f i el d name=" dst "  at t r i b=" show" / >

</ showsumt empl at e>
</ net pdl show>

</ pr ot o>  

Figure 8. NetPDL Visualization Extension: specifying 
the summary related to the Ethernet header . 

As an example, Figure 8 shows the elements of the 
summary view for Ethernet protocol headers. Each Ethernet 
frame will be summarized with the string “Et h: ”  followed 
by the source MAC address, the string “=>”  and the 
destination MAC address, i.e., a format looking like: 

 
Et h:  0001C7- B75007 => 000629- 393D7E 

VII. IMPLEMENTING A NETPDL-BASED ENGINE 

A first implementation of a NetPDL-based engine, also 
supporting the Visualization Extension, can be found in the 
NetBee library [3], which is currently used by the Analyzer 
3.0 protocol analyzer [2]. Both tools have been released as 
open source software.  

The NetPDL database shipped with Analyzer includes 
an experimental description of 64 protocols, mostly related 
to the TCP/IP suite, including Ethernet, Token Ring, 
VLAN, IP, IPv6, TCP, UDP, DHCP, DNS, RIP, OSPF, 
BGP, PIM. This NetPDL-based engine, implemented as a 
500 Kbytes Dynamic Link Library (DLL) for Windows, 
decodes packets and generates detailed and summary views. 
Additionally, it can also perform packet filtering. Analyzer 
accesses NetPDL-related functionalities by invoking 
functions (such as DecodePacket ( )  ) exported by the 
DLL. The NetBee Library exports a very clean interface 
and decoding and printing a packet requires only a few lines 
of code as shown in Figure 9. 



 12 

whi l e ( 1)
{
s t r uct _nbPDMLPacket  * PDMLPacket ;
s t r uct _nbPDMLPr ot o * Pr ot ocol I t em;

/ /  Read packet  f r om f i l e or  net wor k
Res= Packet Sour ce- >Read( &Packet Header ,  &Packet Dat a) ;

i f  ( Res == nbFAI LURE)
br eak ;

/ /  Decode packet
Decoder - >DecodePacket ( Dat aLi nkCode, Packet Count er ,

Packet Header , Packet Dat a) ;

/ /  Get  t he cur r ent  decoded packet
PDMLReader - >Get Cur r ent Packet ( &PDMLPacket ) ;

/ /  Pr i nt  some gl obal  i nf or mat i on about  t he packet
pr i nt f ( " Packet  number  %d\ n" , PDMLPacket - >Number ) ;
pr i nt f ( " Tot al l enght = %d\ n" , PDMLPacket - >Lengt h) ;

/ /  Ret r i eve t he 1st  pr ot ocol  cont ai ned i n t he packet
Pr ot ocol I t em= PDMLPacket - >Fi r s t Pr ot o;

/ /  Scan t he cur r ent  packet  and pr i nt  on scr een t he mos t  
/ /  r el evant  dat a r el at ed t o each pr ot o cont ai ned i n i t
whi l e( Pr ot ocol I t em)
{

pr i nt f ( " Pr ot ocol  %s:  s i ze %d,  of f set  %d\ n" ,
Pr ot ocol I t em- >LongName, Pr ot ocol I t em- >Si ze,
Pr ot ocol I t em- >Posi t i on) ;

Pr ot ocol I t em= Pr ot ocol I t em- >Next Pr ot o;
}

}  

Figure 9. Sample code using the NetBee library: 
decoding and pr inting the details of a packet. 

Table 2 provides a comparison of the performance of 
NetBee’s NetPDL-based engine vs. custom 
implementations. The test, run on a Pentium IV at 2.4 GHz, 
is based on the analysis of 5 traces, each containing at least 
8000 packets captured on our University egress link. Traces 
contain complete packets and no filters have been set in the 
capture process. The analysis of each trace is repeated 10 
times and the second best processing time is retained as 
representative of the task completion time and shown in 
Table 2. The execution time of the relevant code of a few 
well-known tools (Tethereal [4] for packet decoding, which 
is the no-GUI version of Ethereal and WinPcap [8] for 
packet filtering) is measured and compared to NetBee’s. 
Both tools are able to decode packets in memory and, if 
required, to create a PDML file (XML-based format for 
packet detailed view) containing the packet description. 

Table 2 shows that the performance of NetBee (which 
decodes protocols by means of a NetPDL-based engine) 
and Tethereal (which implements protocol dissectors with 
native code) is very similar, 75 µs and 66 µs, respectively. 
These numbers account only for the decoding time, since 
the decoded packet is only created in memory according to 
each tool internal format. In case only the most important 
information about each field is required (basically the field 
name, its position in the packet dump, and its size), NetBee 
further decreases the processing cost from 75 µs/packet to 
39 µs/packet; this function, called “partial packet decoding” 
in Table 2 is not available in Tethereal. In case decoded 
packets have to be dumped on file (in PDML format), 
performance increase to 0.65 ms and 1.08 ms per packet for 
NetBee and Ethereal, respectively. However these increased 
figures are mostly due to the efficiency of the code that 

dumps results on disk, which does not depend on the 
decoding process. 

Although these results provide only a general indication 
of the performance obtainable from NetPDL-based tools, 
they clearly demonstrate that the NetPDL language itself 
does not introduce performance penalizations; performance 
fully depends on the quality of the tool deploying the 
language, i.e., of the NetPDL engine implementation. 

 

 T o o l  n a m e  R e s u l t s  

Partial packet 
d eco d in g  N etB ee 3 9  µ s / pkt 

E th ereal ( n ativ e co d e)  6 6  µ s / pkt C o m plete packet 
d eco d in g  N etB ee 7 5  µ s / pkt 

E th ereal ( n ativ e co d e)  1 0 7 7  
µ s / pkt C o m plete packet 

d eco d in g  +  
packet d u m p 
( PD M L )  N etB ee 6 4 8  

µ s / pkt 
W in Pcap ( n ativ e co d e)  < 1  m s  F ilter g en eratio n  

f o r packet f ilterin g  N etB ee 2 8 3 1  m s  

Table 2. Native code vs. NetPDL-based engine 
implementation performance. 

The NetBee library includes also a second set of classes 
that implement packet filtering capabilities. These classes 
compile a high-level filter (in a language similar to the 
libpcap one) to pseudo-assembly instructions, which are 
executed by a virtual machine for processing packets. The 
NetPDL language is therefore used for describing packet 
formats and encapsulations which are intended to generate 
filters, while packet filtering itself is outside the scope of 
the language. Although the filter generation times shown in 
Table 2 are quite long, which is at the moment due to the 
very immature stage of the compiler, the implementation of 
these functionalities is important to demonstrate how a 
single NetPDL database is successfully and effectively 
deployed by different applications.  

VIII. CONCLUSIONS 

This paper presents the Network Protocol Description 
Language (NetPDL), a new extensible, XML-based 
language for describing the format of protocol headers. 
Network applications can base their packet processing on 
the NetPDL protocol database, i.e., a collection of packet 
descriptions. According to this architecture, new protocols 
can be easily supported by updating the protocol database 
instead of changing the application. For instance, tools like 
Ethereal and libpcap/WinPcap must be extended (i.e. new 
code is to be added and the whole tool recompiled) in order 
to support new protocols, while Analyzer needs only to 
update its protocol database without any recompilation. 
Simplicity in upgrading makes NetPDL advantageous also 
for applications that deal with a small set of protocols, for 
which an external protocol database might seem to offer no 
advantage.  



 13 

In any case, this is not the only way that NetPDL can be 
beneficial for packet processing. As many other 
technologies (XDR, ASN.1, IDL, …), the NetPDL protocol 
database can be used to generate C code implementing 
packet processing. The target application includes the 
dynamically generated code as part of its sources, thus 
being able to run this code (natively) at very high speed. In 
this scenario upgrading applications requires automatically 
generating new source files out of an updated NetPDL 
database and re-linking. 

The paper presents the basic NetPDL primitives needed 
for packet format description. NetPDL can be easily 
extended to satisfy the needs of specific applications, its 
syntax is easy to understand, and implementing parsers and 
support tools (such as graphic editors) is particularly simple 
thanks to the large number of existing XML-support tools 
and libraries. NetPDL further allows extensions aimed at 
more specific functions; as an example, this paper describes 
the Visualization Extension that provides primitives for 
describing how packets should be displayed, in a detailed 
and summarized view. NetPDL has been developed as a 
first step in an effort to relieve network applications from 
tasks related to packet processing. The basic idea is to 
delegate such tasks to a packet-processing engine that 
operates based on “standard” packet descriptions. NetPDL 
is intended as the formalism for such packet descriptions 
that can be gathered in an application independent NetPDL 
protocol database. 

This will result in shorter development time for network 
applications and tools like protocol analyzers, firewalls, 
network monitors. NetPDL provides a general way to 
describe the format of protocol headers, eliminating the 
need for implementing a custom protocol database in each 
tool. This is a major change in the network tools arena, 
where each application currently defines its own protocol 
database that is often “hardwired”  into the application code. 

NetPDL-based engines, that perform packet processing 
based on NetPDL descriptions, can be implemented ad hoc 
for specific applications. In addition, if this approach 
became popular, it could trigger the creation of a set of 
“general purpose”  NetPDL-based engines, which can be 
delegated by the applications to perform low-level tasks 
like packet decoding, packet filtering, and field extraction. 
Applications can include a generic NetPDL-based engine as 
external library or interact with an external NetPDL-based 
engine through a public API (Figure 1). The availability of 
off-the-shelf NetPDL-based engines will speed up the 
development of network applications because programmers 
can concentrate on high-level tasks (e.g. implementing 
filtering rules into a firewall) instead of dealing with low-
level issues (i.e. how to locate a certain field in a given 
protocol header). Moreover, given their wide applicability, 
the above-mentioned NetPDL-based engines can be 
extensively tested, deeply debugged, and optimized; 
consequently, their deployment will result in improved 
application quality. 

The Analyzer 3.0 network sniffer is based on a NetPDL-
based engine (implemented within the NetBee library) that 
uses both the basic NetPDL language and the Visualization 
Extension. The NetBee Library has been made freely 

available with a BSD-style license in order to encourage the 
adoption of the presented technologies by both academia 
and industry. Complete specifications of the NetPDL 
language and the related technologies are available at [20]. 

Acknowledgements 

The authors wish to thank Leonardo Scucchia, who laid 
the basis for this work during his Laurea graduation project 
and Francesco Andriani, who contributed to the first 
implementation of a NetPDL-based engine. 

BIBLIOGRAPHY 
[1] Computer Networks Group (NetGroup) at Politecnico di Torino, 

Analyzer, available at http://analyzer.polito.it, March 1999. 
[2] Computer Networks Group (NetGroup) at Politecnico di Torino, 

Analyzer 3.0, available at http://analyzer.polito.it/30alpha/, March 
2003. 

[3] Computer Networks Group (NetGroup) at Politecnico di Torino 
The NetBee Library, available at http://www.nbee.org/, August 
2004. 

[4] Ethereal, a public-domain sniffer. Available at 
http://www.ethereal.com. 

[5] Tcpdump, a public domain sniffer. Available at 
http://www.tcpdump.org. 

[6] S. McCanne, V. Jacobson, The BSD Packet Filter: A New 
Architecture for User-level Packet Capture. Proceedings of the 
1993 Winter USENIX Technical Conference (San Diego, CA, Jan. 
1993), USENIX. 

[7] V. Jacobson, C. Leres and S. McCanne, libpcap, Lawrence 
Berkeley Laboratory, Berkeley, CA. Initial public release June 
1994. Available now at http://www.tcpdump.org/. 

[8] Computer Networks Group (NetGroup) at Politecnico di Torino, 
WinPcap Web Site, available at http://www.winpcap.org, April 
2003. 

[9] Surasak Sanguanpong and Ekapol Rojratanavichai, Syntax 
Directed, Definition Supported Universal Protocol Analyzer, 
Electrical Engineering Conference (EECON), Kasetsart 
University, Bangkok, December 1999. Available at 
http://anreg.cpe.ku.ac.th/pub/protocol.pdf (in Thai). 

[10] Laurent Riesterer, Generator and Analyzer System for Protocols 
(GASP), March 2000, Available at 
http://laurent.riesterer.free.fr/gasp/. 

[11] Christian Lorenz, SPY LAN Protocol Analyzer, 1999, available at 
http://www.gromeck.de/Spy/. 

[12] Solidum (now Integrated Device Technology - IDT), PAX Pattern 
Description Language, October 2002, available at 
http://www.solidum.com/products/pax_pdl.cfm. 

[13] Mark Bednarczyk, JnetStrem Project, http://netrepository.net. 
[14] D. Crocker, Augmented BNF for Syntax Specifications: ABNF, 

RFC 2234, IETF Network Working Group, Nov. 1997 
[15] Olivier Dubuisson, ASN.1 - Communication Between 

Heterogeneous Systems, Morgan Kaufmann Editor, October 2000. 
[16] International Organization for Standardization. Information 

Processing Systems - Open Systems Interconnections - LOTOS - A 
Formal Description Technique Based on the Temporal Ordering of 
Observational Behaviour, Standard ISO 8807, 1989. 

[17] C. Pecheur, VLib: Infinite virtual libraries for LOTOS, proceedings 
of the IFIP TC6/WG6.1 13th International Symposium on Protocol 
Specification, Testing and Verification, 25-28 May 1993, Liège, 
Belgium. Available at ftp://ftp.run.montefiore.ulg.ac.be/pub/RUN-
PP93-03.ps. 

[18] International Organization for Standardization. Information 
technology - Enhancements to LOTOS (E-LOTOS). Standard 
ISO/IEC 15437:2001, 2001. 

[19] International Organization for Standardization. Information 
processing systems - Open systems Interconnection - Estelle - A 
formal description technique based on an extended state transition 
model. Standard ISO/IEC 9074, 1997. 

[20] Computer Networks Group (NetGroup) at Politecnico di Torino, 
The NetPDL Specification, May 2003, available at 
http://www.nbee.org/NetPDL/. 



 14 

[21] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, 
Extensible Markup Language (XML) 1.0 (Second Edition), W3C 
Recommendation, 6 October 2000. 

[22] International Organization for Standardization. Information 
Processing — Text and Office Systems - Standard Generalized 
Markup Language (SGML), ISO 8879, 1986. 

[23] James Clark, XSL Transformations (XSLT) Version 1.0, W3C 
Recommendation, 16 November 1999. 

[24] The Apache Project, Xerces: XML Parsers in Java and C++, 
available at http://xml.apache.org/. 

[25] The Apache Project, Xalan: XSL stylesheet processors in Java and 
C++, available at http://xml.apache.org/. 


